
USER'S GUIDE TO

398H2A

A Robot Programming and Control System

CONDEC~ Unimation Robotics

Unimation Inc.
A Candee Company
Shelter Rock Lane
Danbury, CT 06810
(203) 744-1800

Version 12 June 1980

FOREWORD

This programming manual is intended for use in the field. The material con­
tained herein constitutes Volume II - User's Guide to VALTM.

The furnishing of this document does not constitute or imply a grant of any
license under any patents, patent applications, trademarks, copyrights or
other rights of Seller or of any third party.

Please note that specifications contained herein are subject to change by
UNIMATION INC. without prior notice. This manual is periodically reviewed
and revi sed to accurate ly refl ect and i ncorpora te improvements and engi need ng
changes made on equipment since the previous publication of this manual.
UNIMATION INC. is not responsible for errors or omissions which may appear in
this manual.

PUMA™ Robot Training School

Courses are conducted at our facility in Danbury, Connecticut, and can also
be conducted at your facility. For pricing, scheduling, and additional
inf6rmation, contact:

Technical Training/Publications Department
Unimation Inc.
Shelter Rock Lane
Danbury, Connecticut 06810
(203)796-1003

VAL and PUMA are trademarks of Unimation Inc.

@April 1980 by Unimation Inc...

B/c

I
I
I
I
I
I
I
I
\

I
\

I
I
\
I
\

I
I
I
I
I
I
I
I
I
I
I
\
I
I
I
I
I

(I
\

I
\

I
I
I
I
I
\
I
I
I
I
I
I
I
I
I
I
I
I
\

I
\

I
\

\
I
I
I
I
I

/1
/ I

Chapter 1

CONTENTS

INTRODUCTION 1-1

1.1
1.2
1.3

Overview
Terminology
Notations and Conventions •

1-1
1-2
1-2

Chapter 2 GETTING STARTED WITH VAL 2-1

2. 1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2. 10

Use of the Terminal •
Turning the System On and Off
Manual Control of the Robot
Creating a VAL Program •
Defining Locations
Executing a VAL Program
Using Teach Mode •
Editing a Program
Using the Floppy Disk
Conclusion •

2-1
2-2
2-4
2-5
2-8
2-9
2-12
2-14
2-18
2-21

Chapter 3 THE VAL SYSTEM 3-1

3. 1
3.2
3.3
3.4
3.5
3.6

External Communication •
The VAL Operating System
User-Written Programs
Location Variables
Program Execution
Trajectory.Control

3-1
3-2
3-3
3-4
3-6
3-7

Chapter 4 MONITOR COMMANDS • 4-1

4. 1
4.2
4.3
4.4
4.5
4.6
4.7

Defining Locations
Program Editing
Program and Location-Data Listing
Program and Location-Data Storage
Program Control
Sys·tem Status and Control •
System Switches

4-1
4-5
4-8
4-9
4-13
4-15
4-16

Chapter 5 PROGRAM INSTRUCTIONS 5-1

5. 1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Robot Configuration Control
Motion
Hand Control
Integer Variable •
Location Assignment and Modification
Program Control
Trajectory Control
Miscellaneous •

5-1
5...2
5-5
5-7
5-8
5-9
5-14
5-15

Chapter 6

CONTENTS (Continued)

SAMPLE PROGRAHS 6-1

6. 1
6.2
6.3
6.4

Program Initialization •
Palletizing
Communicating With External Signal Lines •
Use of Tool Transformations

6-1
6-2
6-3
6-5

Appendix A COMPOUND TRANSFORMATIONS A-1

A. 1
A.2
A.3

Defining Relative Transformations
Computational Considerations •
Example •

A-1
A-2
A-3

Appendix B

Appendix C

DEFINING A TOOL TRANSFORMATION

CONTINUOUS PATH. MOTION •

B-1

C-1·

C. 1
C.2
C.3

Controlling Continuous Path
Considerations During Continuous Motion
program Instructions

C-1
C-1
C-2

(
\.

Appendix D

Appendix E

Appendix F

Appendix G

SYSTEM DIAGNOSTICS AND MODIF ICA']'ON •

CHANGES MADE TO VAL •

VAL MESSAGES

SUMMARY OF VAL COMMANDS AND INSTRUCTIONS •

0-1

E-1

F-1

G-1

Index •

G. 1
G.2

Monitor Commands •
Program Instructions

G-1
G-3

Index-l

CHAPTER 1

INTRODUCTION

VAL is a computer-based control system and language designed specificallY
for use with Unimation Inc. industrial robots.

A computer-based system provides the ability to easily define the task a
robot is to perform, since tasks are completely defined by user-written pro­
grams. other benefits of using a computer-based system for programming and
controlling industrial robots include: (1) the ability to respond to infor­
mation from sensory systems such as computer vision, (2) improved perfor­
mance in terms of trajectory generation, and (3) the ability to work in
unpredictable situations or moving frames of reference.

The VAL robot language is permanently stored as a part of the VAL system.
This includes the programming language used to direct the system for indivi­
dual applications. The VAL language is easily learned. Its instructions
are clear, concise, and generally self-explanatory. All commands and com­
munications with the robot use easily understood word and number sequences.
Control programs are written on the same computer that controls the robot.

As a real-time system, VAL's continuous trajectory computation permits com­
plex motions to be executed quickly, with efficient use of system memory and
reduction in overall system complexity. The VAL system continuously gener­
ates robot control commands, and can simultaneously interact with a human
operator, permitting on-line program generation and modification.

A convenient feature of VAL is the ability to use libraries of manipulation
routines. Thus, complex operations may be easily and quickly programmed by
combining predefined subtasks. For example, a typi.cal pa.lletizing task can
be simply programmed by combining two or three "standard" routines.

1 • 1 OVERVIEW

This manual is intended to be used after a robot system has
unpacked and installed, as explained by the equipment manual
The equipment manual should also be referenced if the system
tion.

been properl y
for the system.
should mal func-

The VAL control and programming system are described in this manual.
Various robot servo control modes are discussed; and the VAL commands and
instructions are presented with examples. In addition, examples of robot
control programs are given to be used as guides for generating programs for
individual applications.

Page 1-2 INTRODUCTION
Overview

The VAL language consists of monitor commands and program instructions.
Monitor commands are used to prepare the system for execution of user­
written programs. Program instructions provide the repertoire necessary to
create VAL programs for controlling robot actions.

The appendices include descriptions of compound transformations f tool trans­
formations, continuous-path servo mode, and diagnostic commands; a list of
recent changes to VAL~ a complete list of messages output by VAL; and a
summary of the VAL commands and instructions.

1.2 TERMINOLOGY

The following terms may be new to the reader, or their use in this manual
may differ from earlier experience. These terms are explained more fully in
Chapter 3.

MONITOR

EDITOR

An administrative computer program that oversees operation of a
system. The VAL monitor accepts user input and initiates the
appropriate response; follows instructions from user-written
programs to direct the robot; and performs the computations
necessary to control the robot.

An aid for entering information into a computer system, and
modifying existing text. The VAL editor is used to enter and
modify robot control programs.

(

LOCATION

A list of ins~ructions telling a computer
VAL programs are written by system users
robot is to perform.

A position of an object in space, and the
obj ect. Locations are used 1:0 define the
tations the robot tool is to assume during

how to do something.
to describe tasks the

orientation of the
positions and orien­
program execution.

1.3 NOTATIONS AND CONVENTIONS

A variety of shortened notations. are used in this manual. Several conven­
tions apply "to numerical values to be supplied to VAL commands and instruc­
tions. 'l:hese notations and conventions anl described in the following para­
graphs.

Preceding each monitor-command description are two symbols indicating when
·the command can be typed by the user. A dot (.) signifies the command can
be performed lNhen VAL is in its top-level monitor mode and no user program
is being eXE~cuted (that is, when the system prompt is a dot). An asterisk
(*) indicates the command can be performed at the same time VAL is executing
a user program (that is, when the system prompt is an asterisk). If both
symbols are present the command can be executed in either case.

,I

INTRODUCTION
Notations and Conventions

Page 1-3

When. entering any monitor command or program instruction, the function name
can be abbreviated to as many characters as are necessary to make the name
unique (see Appendix G). No space can be left between the system prompt and
a command name. At least one space is required between a function name and
its arguments (additional information required to specify the function).
One or more spaces are required between function elements not separated by
commas or other separators (extra spaces are ignored). Monitor commands and
program instructions are always completed by typing a carriage return; that
is, by pressing the RETURN key.

For commands and instructions, angle brackets, < >, ,are used to enclose an
item which describes the actual argument to appear. Thus the programmer can
supply the appropriate item in that position when entering the command or
instruction. Note that these brackets are used in this manual only for
clarification, and are never to be included as part of a command or instruc­
tion.

Many VAL commands and instructions have optional arguments. In the descrip­
tions in this manual, optional arguments are enclosed in square brackets,
[]. If 'there is a comma following such an argument, the comma must be
retained if the argument is omitted, unless nothing follows. For example,
the monitor BASE command has the form

BASE [<dx>] , [<dy>] ,[<dz>], [<rotation>]

To specify only a 30D-millimeter change in the Z direction, the command
could be entered in any of the following ways:

BASE 0,0,300,0 BASE ,,300, BA.sE ,,300

Note that the co~nas preceding the number 300 must be present to correctly
relate the number with a Z-·direction change. Like angle brackets, square
brackets are never entered as part of acomrnand or instruction.

Several
tions.
by VAL.

types of numerical arguments can appear in
For each type there are restrictions on the

The following rules should be observed:

commands and instruc­
values that are accepted

1. Distances are entered to define locations to which the robot is to move.
The unit of measure for distances is the millimeter, although units are
n,ever explicitly entered for any val ue. Val ues entered for distances
can be positive or negative, with their magnitudes limited by a number
representative of the maximum reach of the robot (for example, 1024 rom
and 700 rom for the PUMA 500 and PUMA 250 robots, respectively). Within
the resultant range, distance values can be specified in increments of
0,,01 rruu. Note, however, that some values cannot be represented inter­
ni:l11y, and are stored as the nearest representable value.

2. Anqles in degrees are entered to define and modify orientations the
robot is to assume at named locations, and to describe angular positions
of robot joints. Angle values can be positive or negative, with their
ma~rnitudes limited by 180 0 or 360 0 depending on the usage. Within the

Page 1-4 INTRODUCTION
Notations and Conventions

(

resultant range, angle values can be specified in increments of 0.01°.
Some values cannot be represented internally, however, and are stored as
the nearest representable val ue.

3. Arguments indicated as being integer variables can be satisfied with an
integer value except where noted. SUch a val. ue can range from -32768 to
32767.

4. Joint numbers are to be integers from one up to the number of joints in
the robot, including the hand if a servo-controlled hand is operational.
Joint numbering starts with the rotation about the base.

5. Ch~nnel numbers used to identify the external signal lines can have
integer values from one up to the maximum number of lines available to
the sysbem. A negative channel number indicates an electrical "low"
state.

6. When a command or instruction requires a numerical val ue for some other
kind of argument, the magnitude of the value can range from 0 to 327.67.
This applies, for. example, to values supplied for speeds and for times.

(

CHA.F'I'ER 2

GETTING STARTED WITH VAL

This chapter is intended to help you start using VAL. You will learn how to
use the most important features of your robot system, using examples repre­
senting common tasks. To get maximum benefit from this chapter, you should
use a VAL system to do each example. Before you start, however, refer to
your system equipment manual to make sure your system is properly set up.

2. 1 USE OF THE 'l'ERMINAL

Once your robot system is set up, you are ready to turn it on and put it to
work. You should first turn on the terminal. A printing terminal allows
you to save the output for future reference. CRT or "display" terminal s are
often convenient because they are much faster than printing terminals.

If you are using a CRT terminal, you should wait for it to warm up before
proceeding. When the terminal is ready for use its cursor is displayed in
the upper left corner of the display. The function of the cursor is to
indicate where information will next appear on the display. That is, either
information being input to the system from the keyboard, or being output
from 1:he system to the terminal.

To eni:er information into the system, you type the appropriate characters
and then press the key labeled "RE'rURN" at the end of each line. (Some ter­
minals have the RETURN key labeled differently.) Note that the system does
not respond to what you type until you complete the line with a RETURN.
Also, if you make a mistake while typing, you can use the BACKSPACE (or
RUBOm~) key to back up the cursor and erase the error (on a print~ng termi­
nal the appearance is different, but the result is the same).

In the examples, characters that you are to type are underlined, and the
symbol ".'jl,)" is used to represent the RETURN' key.

You should be careful to type the examples exactly as shown so that you see
the intended effect. You may get frustrated by unexpected results, includ­
ing error messages, if you do not type things as shown. If you happen to
type something which leads to an error message, you can refer to Appendix f
for assistance.

Page 2-2

2.2 TURNING THE SYSTEM ON AND OFF

GETTING STARTED WITH VAL

(

During
which

just
which

After the terminal is ready, you can turn on the robot system. First turn
on 1:he AC POWER switch on the Unimation Computer/Controller. A message
s,imilar· to the following should be displayed on your terminal:

VAL-500 V12H (CP, E200)
INITIALIZE (YIN)?

This has identified the characteristics of the system you are using. In
this case the system has a five-axis PUMA robot (500), version 12H (V't2H) of
VAL, the Continuous Path feature (CP), and the robot has a 2DD-line encoder
on joint 2 (E200). Note that the version number indicated should agree with
the version of the "User's Guide to VA..L" being used.

At this point VAL is asking if you want the system initialized.
initialization the contents of all the computer RAM,memory are erased,
is used to store programs and robot location data. Since you have
turned on power, you MUST respond with a "Y" and press RETURN, after
the display shows:

VAL-SaO V12G (CP,E200)
INITIALIZE (Y/N)? Y®
ARE YOU SURE (Y /N)?

You must now type another "Y®". If you type anything other than a "y" to
either of these questions, the system is not properly initialized, and it
will not operate correctly.

NOTE

(

It is important to remember that you must initialize the
every time power is turned on. (Unless your system
volatile memory which has already been initialized.)

system
has non-

YO-.l should now see a dot (".") displayed, which indicates that
has started up successfully. (If a message is displayed, refer
F.) ~~he dot displayed on your terminal is called a "prompt"
indicates the system is waiting for input.

the system
to Appendix
because it

You will see three different prompts while using a VAL system. They not
only indicate the system is waiting for input, but also give an indication
of what portion of the system is waiting. The dot prompt comes from the VAL
monitor, which is the admini.strative portion of the system. Any of the VAL
monitor commands (presented in Chapter 4) can be input i.n response to the
dot prompt.

While using
prompt is
this prompt
commands.

the VAL editor, which is used to create
a number followed by a question mark.
are any VAL program instruction, or any

and modi~y programs, the
The proper responses to

of the various editor

(

GETTING STARTED WITH VAL
Turning the System On and Off

Page 2-3

The third prompt you will see is an asterisk ("*"). This prompt comes from
the monitor, but it is different from the dot prompt to indicate that a
user-written VAL program is active. When an asterisk prompt is displayed,
most of the VAL monitor commands can be entered. In Chapter 4 you will see
which commands can be input after an asterisk prompt.

The nm~t step in turning on the system is to turn on power to the robot.
Currently the servos in the robot are inactive, and the joints are being
held in position by brakes or friction. To turn on the servo system, you
should (1) hold one hand over the button on the Computer/Controller labeled
"ARM POWER OFF", and (2) press the buttoJ:l labeled "ARM POWER". You should
immediately press the ARM roWER OFF button if the robot should start to move
when power is applied. Any such motion indicates that something is wrong
wi th t:he system.

The last step in turning on the system involves calibrating the robot
position-feedback system. Look at the manual control unit, and note the six
"mode" buttons along the left side of the unit • Unless you have already
pressed one of these, the light next to the OFF mode button should be on.
This· indicates that none of the' "active" modes has been selected. During
the calibration operation the robot is driven by VAL. For this to be
possible, the system must be in COMPUTER mode, which is selected by pressing
the button labeled "COMP".

The requirements for calibrating the robot depend on the model of robot sys­
tem you are using. For the PUMA 500 or 600 robot systems, the robot can be
at any location within its workspace when the operation is begun. To

calibrate the PUMA 250 robot system, however f the robot must initially be
located in its "nest. Of

If you are working with a PUMA 250 robot system, and the robot is not
already in the nest, you must perform the following steps. Press the button
labeled "COMP" on the manual control unit; then type "LIMP®" •

•LIMP®
ARE YOU SURE (yIN)?

When you are ready to have all the robot joints become limp, type "Y®" in
response to the query.

.LIMP®
ARE YOU SURE (YIN)? Y®
HIT RETURN WHEN ARM IN NEST

Then you should manually move the robot to put the wrist flange in the nest.
(Note the pins vmich prevent the flange from being put into the nest with
the wrist in the wrong orientation.) Press RETURN to reenable the servos.
VAL responds with "OK" on the terminal to confirm the operation.

From here the procedure is the same for all VAL systems. To calibrate the
system" type "CALIBRATE®" on the terminal.

Page 2-4

NOTE

GETTING STARTED WITH V~L

Turning the System On and Off

Most monitor commands and program instructions can be abbreviated •.
The minimum abbreviations are indicated in Appendix G. Commands
and instructions are shown in their full form in this chapter •

. CALIBRATE®
ARE YOU SURE (yiN)? y®
OK

You have seen that VAL sometimes responds with a query about whether you are
sure you want to do what you requested. This is done to give you a chance
to change your mind when you request something that could have a significant
effect on the status of your system. In this case you are sure, and should
respond with "Y®" for "yes."

All the robot joints should
allows VAL to initialize
light on the manual control
calibrated.

immediately move a small amount. This mot-ion
the servo control system. Note that the CALIB

has gone out, indicating that the system is

ThiscompletE:s the procedure for turning the system on. Turning it off is
much simpler. All you need to do is (1) press the ARM POWER OFF bui:ton on
the Computer/Controller, and (2) turn off power to the controller and the
terminal.

2" 3 MANUAL CONTROL OF THE ROBOT

Once the system is initial ized and cal ibrated, it is ready for use. You
should control it with the manual control unit first, so you can get an idea
of how the robot moves.

There are manual control modes which drive the robot in various ways. The
SPEED knob can be used with these modes to control the speed of motion,
which can be varied from very slow (counterclockwise settings) to fast, even
while the robot is being moved. (For now you should not use the fully
counterclockwise setting of the SPEED knob.) Note that there is no rela­
tionship between the motion speeds obtained under manual control and those
produced by computer control. For safety, the maximum speed at which the
robot moves under manual control is less than the maximum possible under
comput~er control.

You can use the manual control unit to drive each robot joint by selecting
JOINT mode, turning the SPEED knob to a small setting, and pressing the
appropriate joint-select switch to one side. You can vary the speed of the
motion by turning the SPEED knob. Also, you can move more than one joint at
a t_ime. If you move a joint to the extreme of its range, motion stops and a
message appears in the display of the manual control to indicate the cause.

(

(

GETTING STARTED WITH VAL
Manual Control of the Robot

Page 2-5

~fter you have experimented with JOINT mode, select FREE mode. (Be careful
while using FREE mode with joints 2 ~nd 3 to make sure you are prepared to
support the robot when either of these joints is released.) In FREE mode,
when you move a joint-select switch toward "+" the servo system releases
control of that joint, and you can move it to a new position by pushing on
the members of the robot. Pushing the joint switch toward "-" (or selecting
another mode) returns control to the servo, and holds the joint in the new
position. ~s with JOINT mode, more than one joint can be selected at a
time.

WORLD mode provides another way to drive the robot. Refer to the labels to
the left of the switches while using this mode. These indicate that the
robot tool can be made to move in X, Y, Z coordinate directions, and rotate
about those axes. In ·the case of WORLD mode, the coordinate directions are
fixed to the base of the robot. Try moving the robot in WORLD mode, using
the SPEED control to vary the speed of motion. In this mode all the joints
are moved in unison as required to make the robot move as requested.

The final manual control mooe is TOOL mode. This mooe i.s very similer to
WORLD mode because the robot tool moves relative to a set of X-Y-Z axes.
But in TOOL mode the axes are fixed to the tool, rather than to the base of
the robot. Experiment with TOOL mode W1til you understand the difference
between it and WORLD mode.

You have now used the three modes in which ·the robot can be driven under
.manual control. The robot moves as long as you hold one or more of the
toggle switches off center. There is a special setting of the SPEED knob
which is different. If you turn the knob fUlly counterclockwise to the INC
(" increment") setting, each time a toggle switch is moved off center f

regardless of how long it i.s held, the robot moves the minimum amount the
servo system can resolve. As before, the motion is determined by the mode
selec1:ed and toggle switch pressed. The INC setting permits very precise
positioning of the robot.

2. 4 CREATING A VAL PROGRAM

You will now create a program to have the robot perform a simple task. A
program is a list of the things you want the robot to do for you. \4hen a
program is "executed," the system looks at each line of the program, and has
the robot do whatever is instructed by that line. Thus, the lines of a
progra.m are said to contain "instructions."

There are two aspects of every application which must be described to the
VAL system. These are (1) the motions and actions the robot is to perform,
and (2) the places in the workspace to which the robot is to move. Either
of these can be considered first.

The task you will program is to pick up a part from one location and place
it at another location. This is a very common type of task, and is often
referred to as "Pick and Place." Imagine an indexing conveyor bringing

Page 2-6 GBTTING STARTED WITH VAL
Creating a VAL Program

(

boxes past the robot. The job of the robot is to pick parts from a chute
and place them in successive boxes.

Begin by identifying all the motions and actions required of the robot to
complete the task. One possible sequence of robot activity is as follows:

1. Move to a location above the part in the chute.
2. Move to the part.
3. Close the hand.
4. Remove the part from the chute.
5. Carry the part to a location above the box.
6. Put the part into the box.
7. Open the hand.
8. Withdraw from the box.

Assuming that this sequence is begun with the hand already open, you can see
that the sequence could be repeated indefinitely with the desired result.

To tell the VAL system how to do this task, you need to create a VAL pro­
gram. To do this you use the VAL editor, which provides the means to enter
programs into the computer, and later make any needed changes. Type
"E1?IT DE~10. 1®" to tell VAL you want to edit a program named DEMO.1. VAL
can tell this program does not currently exist in the computer memory, and
creates a space for it. As a result you see the following lines on your
terminal:

•ED!T DEMO.1 ®

• PROGRAM DEMO. 1
1.?

VAL is waiting for you to enter the first step of your program. You should
type "APPRO PART, 50®".

NOTE

It is imp::>rtant that you distinguish between the letter "0" and
the number "0" whenever you enter information to the system.

The following lines should be on your terminal:

.EDIT GEMO.1®

. PROGRAM DEM O. 1
1.?APPRO PART,50®
2.?

Now VAL is asking for the next step. Enter the remainder of the program as
given below. Recall that if you make a mistake on a line, you can correct
i.t if you have not pressed the RETURN key. If you do not notice a mistake
before pressing RETURN, VAL outputs an error message if it cannot understand
the line. In that case VAL prompts again for the same line. If the line is

(

GETTING STARTED WITH VAL
Creating a VAL Program

Page 2-7

acceptable to VAL, but is not what you want, you will learn later how you
can delete, replace, or correct the line.

The following lines should be displayed after the complete program is
entered:

.EDIT DEMO.1®
• PROGRAM DEMO. 1

l.?APPRO PART,SO®
2. ?MOVES PARTr>y
3.?CLOSEI®
4.?DEPARTS 150®
5.?APPROS BOX,200®
6.?MOVE BOX®----
7. ?OPENI®
B.?DEPART 75®
9.?

This completes the program. When the program is executed, it causes the
robot to perform the steps which described the task. The exact meaning of
each line is:

1. Move to a location 5D millimeters above the part in the chute.
2. Move along a straight line to the part.
3. Close the hand.
4. Withdraw the part 150 mm from the chute along a straight-line path.
5. Move along a straight line to a location 200 mm above the box.
6. Put the part into the box.
7. Open the hand.
8. Withdraw 75 rom from the box.

To make sure the instructions are correctly entered, review them using some
more features of the editor. Type "S®" to display the first step of the
program. Notice that VAL has rearranged the information on the line slight­
ly, but the meaning is unaffected. If you press RETURN without typing
anything, the following step is displayed. You can review the whole program
this way.

9. ?S®,.
1. ?®
2.
2.?

APPRO PART; 50.00

MOVES PART

If you find a line that contains an error, you can simply retype
after it is displayed, and the new version replaces the old line.
a line from the program, type "D®" when the cursor is at the step
the line to be deleted.

the line
To delete

O1.+.Tflber of

You know how to display the next line of the program by pressing RETURN. To
print the next five lines type "p 5®". To see the preceding line, type "L®"
(for "last"). Try these editor commands.

Page 2-8 GETTING STARTED WITM VAL
Creating a VAL Program

(

Once you are done editing the program, you have
return to the VAL monitor to execute the program.

to exit the editor
Type "Eii)" to do that.

and

2.5 DEFINING LOCATIONS

9. ?S®
1 • APPRO PART, 50.00
1. ?(1j)

2. MOVES PART
2. ?E®

The next step in programming the task is to define the locations which are
to correspond to the names in the program. Note that by "location" we mean
the point in space to which the tool is to move, and the orientation the
tool is to assume at that point. Recall that this step could have been done
first; sometimes that is preferable.

There are several ways to define the robot locations corresponding to loca­
tion names. Only one of them is used here. "Teach Mode," another method
for defining locations, is explained in a later section. other ways to
define locations are described later in this manual.

Begin by defining the location of the part in the chute. Using the manual
control, move the robot to a location where you might imagine a pa.rt to 1;>e
located. That is, move the hand to the desired point in space, wit.h the
desired orientation.

Once you have the robot where you want it, enter the following command:

(

Y!JT2
530.47

.HERE PART®

X!JT 1
34.75

CHANGE?
®

Z!JT.3 O!JT4
-23.06 -167.459

A!JT5
57.437

T!J'f6
114.247

'rhis has told VAL to assign the name "PART" to the current location of the
robot. The numbers displayed are the X-Y-Z coordinates of the hand, and
t.hree angles (0, A, T) which dGfine the orientation of the hand.

Simil arl y~ move the robot to another location a short distance away, and

1:ype "HERE BOX(j\@". You should always try to minimize the distances between
locations to minimize the travel time between them. Thus, in set.ting up a
task, ·try to locate things as close together as possible.

Now that you have told the system--with your program--what robot actions are
t:o be performed, and have defined the locations involved, you are ready to
have the system execute your pr.ogram.

GETTING STARTED WITH VAL

2.6 EXECUTING A VAL PROGRAM

You should get used to using the STATUS command. Try it now.
see the following information displayed:

.STATUS®
MONITOR CONTROLLED SPEED: 100.00
TOOL TRANSFORM:

"EXEC" LOOPS COMPLETED O.
"EXEC" LOOPS REMAINING O.

RTN NE XT STEP

Page 2-9

You should

The first line indicates that the
means that subsequent motions are
itor speed is set by the monitor
motions will be slow enough to
drastic happens.

"monitor" speed is set to 100.00, which
to be performed at "full speed." The mon­
SPEED command. Do that now so robot
allow manual intervention before something

To change the monitor speed to 20, and verify the change, type

.SPEED 20®

.STATUS®
MONITOR CONTROLLED SPEED: 20.00
TOOL TRANSFORM:
"EXEC" LOOPS COMPLETED O.
"EXEC" LOOPS REMAINING O.

RTN NEXT STEP

This means 20% of "full speed," which is a slow, safe speed.
command indicates the speed has changed as requested.

'rhe STATUS

The other lines displayed by the STATUS command will become meaningful as
you learn more of the system features. For now, note there is no program
executing, since no information is displayed below "RTN" as shown above.

Now that the speed is set to a safe value, you are ready to execute your
program. Remember the program was written with the assumption that the
robot hand would be open initially. Make sure it is open, or the program
will not do exactly what you want. To open the hand, select any of the
manual control modes and press the TOOL switch toward "0".

CAUTION

If the robot does something undesirable, you can stop it by press­
ing the OFF button ("panic button"). The ARM POWER OFF button can
al so be pressed to stop the arm in an emergency.

Page 2-10

Since you want the computer to control the robot,
To execute the program, keep a finger near the
control, and type

.EXECUTE DEMO.1®

*

GETTING STARTED WITH VAL
Executing a VAL Program

you must select COMP mode.
OFF button on the manual

The robot should go through all the steps defined by the program, and the
following lines should be displayed on your terminal:

•EXECUTE DEMO. 1®

*PROGRAM COMPLETED: STOPPED AT STEP 9.

This indicates the robot stopped because the program execution requested by
the EXECUTE command was completed. If you want to change the locations,
return to the previous section and repeat the steps for defining locations.

Of course it is not too useful to have the robot stop after moving one part.
Thus, you would like to tell VAL to execute the program a number of times,
or .even indefinitely. To execute the program five times in suc.cession, type
"EXEC DEMO. 1, 5@". The robot stops after the fifth complete cycle, and the
above message is displayed.

Several "shortcut" features have been incorporated in VAL. for convenience.
For example, .after a program completes execution, it can be executed again
without having to retype the name of the program. Type "EXECUTE®" to have
the program executed one time, or "EXECUTE ,3®" to have it executed three
times. Note that a comma was required in this last case to indicate proper­
ly that the "3" was a repeat specification. If you type "EXECUTE 3®", VAL
gives an error message because it interprets this as a request to execute a
program named "3", which is not a val id program name.

Type
The
gram

"EXECUTE ,-1®" to execute your program an indefinite number of times.
negative repeat specification is a signal to VAL that you want the pro­
to be executed until you stop it.

A program can be stopped three ways. Each time you stop execution, VAL in­
dicates the. program step at which the program stopped. The number displayed
is for the step that would have been executed next, not the number of the
step just completed or interrupted.

If you type "ABORT®" on the terminal, the program stops after completing the
step current~y executing, and the following is displayed:

•EXECUTE ,-1®
*ABORT®

*
ABORTED (STOPPED AT STEP 8.

GETTING STA.RTED WITH VAL
Executing a VAL Program

Page 2-11

Pressing the OFF button on the manual control causes the program to stop
immediately, and the following display. Note that CaMP mode is no longer
selected on the manual control, and must be selected before the program can
be executed again.

.EXECUTE ,-1®
**PANIC Bl~TON HIT*
STOPPED AT STEP 6.

The program stops immediately if you press the ARM roWER O!:"F button i and
the message below is displayed. When the button is pressed, power to the
robot is turned off, and OFF mode is selected on the manual control •

•EXECUTE ,-1'f9
**HARDWARE SERVO DISABLED*
STOPPED AT STEP 3.

NOTE

Using this method to stop program execution puts high stress on
the drive comfOnents of the robot. Thus, the ARM roWER OFF button
should only be used in emergencies.

Start the program executing again so you can try the ability of VAL to sim­
ultaneously interact with an operator. The first thing to note is that
while a program is executing, VAL displays an ilsterisk (n* ..) as its prompt
instead of a dot ("."). This is done to indicate a program is active. Try
the ST1\,TUS command a few times to see what happens. Each time VAL displays
lines s"imilar to the following •

4.
INFINITE

•EXECUTE ,-1®
*STATUS®
MONITOR CONTROLLED SPEED:
TOOL TRANSFORM:
"EXEC" LOOPS COMPLETED
"EXEC" LOOPS REMAINING

RTN NEXT STEP
DEMO. 1 6.

*

20.00

You can see how many times the program has been executed (four in the above
example) • Also note the name of the program is indicated, and step #6 was
about to be executed.

Change t:he speed to 40 by typi.ng

*SPEED 40®

*

Page 2-12 GETTING STARTED WITH VAL
Executing a VAL Program

(

Note the cha.nge does not become effectlve immediately. After trying a few
other speed settings, set the speed to 60.

Type "SWITCH," to see the status of the VAL switches.

*SWITCH®
CP ENABLED
CRT DISABLED
HHT ENA.BLED
MESSAGES ENABLED
SRV.ERR DISABLED

*

These are described in Chapter 4, but for now consider the "CP" switch.
When this switch is enabled the continuous-path feature of VAL is active,
and the robot moves smoothly from one motion to another, as it should be
doing now. Disable the CP switch by typing "DISABLE CP®", and note the
difference in the motions. The robot stops briefly between each motion.
'l'ype "ENABLE CP®" to restore continuous path. The dialogue for these
commands should look like this:

*DISABLE CP®
OK
*ENABLE CP®
OK

*

You have seen a few of the commands that can be issued to VAL while a pro­
gram is eXE~cuting. As you learn more of the commands available, you will
learn that most of them can be processed in this mode I as well as when no
program is active. It is significant to note that you can use the editor
while a program is executing. Thus, you can work on a program while the
system is in use performing a task. You can even edit the program that is
executing! That must be done with caution, however, because any change ha~

its effect the next time the step is executed, and this may cause the robot
to behave in an unexpected way.

Stop the program by typing "ABORT®", or by pressing the OFF button.

2.7 USING TEACH MODE

You learned earlier how to create a program and define the locations used in
that program. For some applications it is useful to combine both of those
steps into one by using teach mode. Teach mode is just another way to enter
program instructions and locations into the system.

(

Suppose you want to add a sequence of
Imagine you want the robot to move to
the part from the chute, and before it
mode provides a useful way to make the

motions to the
three new locations

places the part into
necessary changes to

program DEMO. 1 •
after it removes

a box. Teach
the program.

GETTING STARTED WITH VAL
Using Teach Mode

Page 2-13

First use the editor to access the program. Then move to the line after the
point at which you want to insert instructions. For the example above, that
means your terminal should display these lines:

.EDIT DEMO.1®
• PROGRAM DEMO. 1

1. APPRO PART, 50.00
1. ?®

2.
2.?®
3.
3. ?®

4.
4. ?®

5.
5.?

MOVES PART

CLOSEI 0.00

DEPARTS 150.00

APPROS BOX, 200.00

You have a choice of two types of teach mode. Each will insert motion
instructions into your program; they differ in the type of motion that is
produced. "T" teach mode produces joint-interpolated motion instructions,
which are usually preferred. "TS" teach mode produces straight-line motion
instructions. To invoke "T" mode, for example, type "T NEW1®". Note the
display on the manual control indicates "TE:ACH MODE".

Now, each time you press the RECORD button on the manual control, a MOVET)
instruction is automatically be inserted into the program. Move the robot
to three locations near those you have already taught, and change the hand
opening at each location. Press the RECORD button when the robot is at each
new location. When you press the button, the display on the manual control
blinks to indicate the button has been pressed, and a new line appears on
the terminal. Note the name you specified for the new locations ("NEW1 ")
has its suffix number incremented for each location, and the number after
the name is zero when the hand is closed, and a positive number when the
hand is open.

To end teach mode, press the RETURN key On the terminal. While using teach
mode, the following lines should have been added on your terminal:

c)
(

®

5. ?T
5.
6.
7.
8.
8.?

NEW1®
MOVET NEW 1,
MOVET NEW2,
MOVET NEW3,
APPROS BOX,

0.03
0.00
0.03
200.00

There are several things to note about teach mode. As mentioned above, the
suffix number on the location name is increased for each location. Three
MOVET instructions were entered into the program, and the APPROS instruction
that used to be step #5 is now step #8. That is because teach mode inserts
the MOVET instructions ahead of the step at which teach mode is started.

Page 2-14 GETTING STARTED WITH VAL
Using Teach Mode

Exit from t~he editor, set the speed to 20, and reexecute the program. In
the middlE' of the old sequence of motions the robot should move to each of
the new locations, and the hand should open and close as you requested.

8. ?E®
.SPEED 20®
•EXECUTE®
*PROGRAM COMPLETED: STOPPED AT STEP 12~

Teach mode can be used to create a whole program. Note, however , with teach
mode you cannot automatically generate anything but MOVET and MOVEST
instructions. To have other instructions in a program you always have to
type them in as you did when you originally created DEMO.1. Try using TS
teach mode to define a new program with four or five steps. For example, to
use TS. teach mode to create a program named "TEACH", type

.EDIT TEACH®

.PROGRAM TEACH
1.?TS NAME1®
1. MOVEST NAME1, 0.00
2. MOVEST NAME2, 0.00
3. MOVEST NAME3, 0.00
4. MOVEST NAME4, 0.00

® 5. ?E®
.EXECUTE TEACH®
*PBOGRAM COMPLETED: STOPPED AT STEP 5.

When you are done teaching locations, type"®" to end teach mode, and "E®"
to exit the editor. Select COMP mode, and execute the program to see its
effect.

2.8 ED1TING A PROGRAM

You have already used some of the features of the VAL editor to create and
modify programs. Other editor features are used in this section.

Returning to the program named DEMO. 1, assume you want to make the following
changes:

1.' Delete the three motions inserted with teach mode.
2. Have the program "loop" indefinitely, independently

of the EXECUTE command used to initiate execution.
3. Add a "counter" to display the number of parts moved.

To make these changes you will have a chance to try all the editin.g com­
mands. First, access the program for editing. If you are not already at
step # 1, move there by typin.g "S®". Now display the whole program on your
terminal by typing lip 22®".

(
\

GETTING STAR'I'EO WITH VAL Page 2-"15
Editing a Program

.EDIT DEMO.1®
• PROGRAM OEM O. 1

1. APPRO PART, 50. 00
1.?P 22®
2. MOVES PART
3. CLOSEI 0.00
4. DEPARTS 150.00
5. MOVET NEW1, 0.03
6. MOVET NEW2, 0.00
7. MOVET NEW3, 0.03
8. APPROS BOX, 200.00
9. MOVE BOX

10 • OPENI o. 00
11. DEPART 75.00
12.?

To delete the three motion instructions, first move to step #5. The command
., S S®" does that. Now if you type "D 3®", that step, and the two that fol­
low it, are deleted, and all the following steps are moved up three steps.
To cOl1.firm that, type "00" and then tIp 22®". After deleting these three
lines your progrwn should be back to its original form. You can EXECUTE it
to see that it performs the original task •

..
12. ?S 5®
5. MOVET NEW 1, 0.03
5.?D 3®
5. APPROS BOX, 200.00
5.?S®
1• APPRO PART, 50.00
1. ?P 22®
2. MOVES PART
3. CWSEI 0.00

4. DEPARTS 150.00
5. APPROS BOX, 200.00
6. MOVE BOX
7. OPENI 0.00
8. DEPART 75.00
9.?

A pro<;rram "loop" means that one or more steps are repetitively executed.
This is done by having control "branch" from one step in a program back to a
prev ious step. Branches can be done every time, or they can be done only
when certain conditions are met. These are called unconditional and condi­
tional branches, respectively.

Whenever a branch is done, there must be a way to identify the step to which
the branch is made. You have seen that the step numbers displayed by the
editor can be used to identify steps in the program. But you have also seen
that the step number associated with an instruction can change if insertions
or deletions are done. Thus, there needs to be a way to attach labels to
instructions, independent of the step numbers. Any positive integer less
than 32767 can be used as such a label in VAL programs, and there can be as

Page 2-16 GETTING STARTED WITH VAL
Editing a Program

(

many label s in a program as you 1 ike. You will now see how to add a label
and a branch instruction to your program.

To make the example program execute indefinitely, there needs to be an
unconditional branch from the last step to the first. Thus, a label must be
added to the first instruction. You can do that two ways. Replace the
whole line, adding the label, by typing "&ii)" to skip to the first line, and
then type a new 1 ine as shown.

9.?S®
1. APPRO PART, 50.00
1.710 APPRO PART,50®
2. MOVES PART
2.?

The number "10" is the label that has been assigned to the APPRO instruc­
tion. Type "L®" to display the last (prev ious r not final) line to confirm
the change" To practice the other way to add a label to a line, replace the
line again with "APPRO PART, 50".

2. ?L®
1 • 10 APPRO PART, 50.00
1.?APPRO PART,50®
2. MOVES PART (
2.7L®
1. APPRO PART, 50.00
1.?

You can replace a portion of a line using the editor R command. Skip to
the line to be changed, and type spaces until the c~sor is beneath the
first character to be replaced. 'Then type an "R" and one space; and the
new character(s) to go into the line. In the case o:f adding the label "10",
this involves simply typing "R 10" when the cursor is positioned after
"1.7". Do this and note the effect. The replace command is useful for
making minor changes to lines.

1. APPRO PART, 50.00
1.?R 10®
1. 10 APPRO PART, 50.00
1. ?

To make the program branch to the step with the label "10", add a step at
the end of the program containing "GOTO 10". That is, after "9.?" type
"GOTO 10®". Exit from the editor and type "LISTP DEMO. 1®". Your program
should be displayed as follows:

(

GETTING STARTED WITH VAL
Editing a Program

1. ? S 9®
9. ?GOTO 10®

10.?E®
.LISTP DEMO.1®
• PROGRAM OEMO. 1

1. 10 APPRO PART, 50.00
2. MOVES PART
3. CLOSEI 0.00
4. DEPARTS 150.00
5. APPROS BOX, 200.00
6. MOVE BOX
7. OPENI 0.00
8. DEPART 75.00
9. GOTO 10

• END

Page 2-17

You can see that every time step #9 is executed, cont~ol branches to
#1, which is what was desired. If you now EXECUTE the program, the only
to have it stop is to use one of the aborting methods described earlier.

step
way

The final change to the program involves adding a counter, which is just a
number stored in the system memory used to keep track of the number of times
something has happened. For your program, you want to count the number of
parts that have been put into boxes.

First you need to insert a step to "initialize" the count to zero. Skip to
the. first line of the program with "00". Typing "I®" causes the editor to
enter "insert" mode. Now type a new first line containing :'SETI Ci)UNT=O".
This i.nstruction tells VAL to SET the value of the !nteger variable named
COUNT to zero. Any name could have been chosen for the variable, COUNT is
conveni.ent because it conveys the meaning the number has to you •

•EDIT DEMO.1®
• PROGRAM DEMO. 1

9. GOTO 10
9.s®
1. 10 APPRO PART, 50.00
1. ?I®
1.?SETI COUNT=O®
2.?®
2 • 10 APPRO PART, 50.00
2.?®
3. MOVES PART
3.?

To end insert mode, press
empty line. Note that
following steps have been

RETURN when the cursor is at the begirtning of an
the old first lin~ is now step #2, and all the

renumbered al so.

Page 2-18 GETTING STARTED WITH VAL
Editing a Program

(

Skip to step #9 and insert the instructions shown b.elow. Once again. type
"I®", enter the two lines. and press RETURN to end insert mode.

3.?S 9®
9. DEPART 75.00
9.?I®

9.?SETI COUNT=COUNT+1®
10.?TYPEI COUNT®
11 • ? (ij)

110 DEPART 75.00
11. ?

Your first reaction may be that the arithmetic indicated in the first of
these steps is wrong. In computer programming, an equal sign does not mean
"is equal to," but rather is used to mean "is replaced by." Thus, the first
step causes the value stored in the variable COUNT to be increased by one
each time the step is executed. The second step displays the value of COUNT
ontha terminal.

EXECUTE the program and note that after each cycle VAL displays a
ing the current vaiue of COUNT. It is important that the step
COUNT equal to zero was placed outside of the loop. If that had
done, COUNT would never go beyond one. Do you see why?

11. ?E®
.EXECUTE DEMO.1®
* COUNT 1.

COUNT 2.
COUNT 3.
COUNT 4.

PANIC BUTTON HIT
STOPPED AT STEP 8.

2.9 USING THE FLOPPY DISK

line
which
not

giv­
sets
been

(

When you finish editing a program, you usually want to store it for future
use. Recall that unless your system has non-volatile memory, aliI. the infor­
mation in memory is lost when power is turned off.

The floppy disk provides a means to save programs and location information
outside of the VAL system. This is useful for maintaining a library of
manipulation routines, as well as for short-term storage of programs under
development.

Jump ahead to Section 4.4, which describes the V~L commands for using the
floppy disk, and read the instructions regarding handling floppy diskettes.
Connect a floppy drive to the Computer/Controller and insert a diskette you
can use freely. Always rem~ber to handle diskettes carefully.

i
I.

GETTING STARTED WITH VAL
Using the Floppy Disk

Before a new diskette can be used, it must be
This establishes a data structure on the
stored. VAL asks if you are sure you want to
erases the entire diskette •

•FORMAT(I'(l
ARE YOU SURE (YIN)? Y®
OK

Page 2-19

formatted. Type "FORMAT®".
diskette so information can be
format because this operation

Information on the diskette is stored in files. There are two types of
files--one for programs, and one for location data. Type "LISTF~" to see a
list of the files on a diskette. The directory of the diskette is used to
keep track of where files are located on the diskette. You do not see that
information, but you do see the names and sizes of all the files on the
diskette. There are no files listed if you have a blank diskette •

•LISTF®
DISK DIRECTORY

264 OF 264 BLOCKS UNUSED

The easiest way to save the contents of the system memory is to use a STORE
command like this:

•STORE DEMO®
• PROGRAM DEM O. 1
.PROGRAM TEA.CH
• LOCATIONS

OK

This creates a program file containing all the programs in memory, and
another file containing the named robot locations used by those programs.
If you type "LISTF~", you see that VAL created two files, DEMO. PG and
DEMO.Le. These contain programs and locations, respectively •

•LISTF®
DISK DIREC'EORY

DEMO. PG 002

DEMO. Le 004
258 OF 264 BLOCKS UNUSED

The names of both of your pr0grams were displayed as they were stored. If
you want to select which programs are to be stored, use a command like this:

.STORE DEM02~DEMO.1®---
• PROGRAM DEMO. 1
• IJJCATIONS

OK

Page 2-20

The programs to be stored
ated by commas. This
("DEMO. 1" can not be used
in fil e names.)

GETTING STARTED WITH VAL
Using the Floppy Disk

are listed to the right of the equal sign, separ­
time the program named TEACH was not stored.
as a file name because periods are not permitted

.LISTF®
DISK DIRECTORY

DEMO. PG 002
DEMO.I.J: 004
DEM02. PG 002
DEM02.LC 001

255 OF 264 BLOCKS UNUSED

Once a file is no longer needed (for example, because it is to
by a new version) use the DELETE command to erase the file.
location file created above, type

.DELETE DEM02.LC®
ARE YOU SURE (yiN)? y®
OK

be replaced
To del ete the

You might want to do this because you have redefined the locations to be
used by yo~~ program. Then you would want to store the new location data.
The STOREL command is like the STORE command ,except that it only creates a
location file. Use a STOREL command to create a new location file named
DEM03. Then use LISTF to see the effect •

•STOREL DEM03=DEMO.1®
• LOCATIONS

OK
.LISTF®

DISK DIRECTORY
DEMO. PG 002
DEMO. LC 004
DEM02. PG 002
DEM03.I.J: 001

255 OF 264 BLOCKS UNUSED

After a program and its location data have been stored in files on a disk­
ette, the way to load them into the system is to use a LOAD command. For
example, to load the files DEMO. PG and DEMO. LC you would use the command

.LOAD DEMO®
• PROGRAM DEMO. 1
.PROGRAM TEACH
• LOCATIONS

OK

(

GETTING STARTED WITH VAL
Using the Floppy Disk

CAUTION

Page 2-21

The next
details
commands
chapters.

When information is loaded from the floppy disk, it writes over
any information already in the system memory which has the same
name. For example, if there is a program named TEST in memory,
and a file is loaded which contains a program with that name, the
version in memory is lost during the LOAD operation.

2. 10 CONCLUSION

You should now have a good idea of how the basic features of VAL are used.
You have seen how to turn the system on and off, and how to issue commands
to the VAL monitor, including how to execute programs. You have learned how
to use the manual control, to move the robot around and to teach locations.
You have also seen another way to define locations--use of the HERE command.
Use of the editor to create and modify programs is very important to under­
stand. Finally, you have seen how to use the floppy disk to save programs
and location data, and to enter them back into the system.

chapter provides a through description- of the VAL system. The
of the commands and instructions you have used, and all the other

and instructions available, are described in the following

I
i

(

CHAPI'ER 3

THE VAL SYSTEM

The function of VAL is to regulate and control a robot system by following
user commands or instructions. In addition to being a compact stand-alone
system, VAL has been designed to be highly intera.ctive to minimize program­
ming time, and to provide as many programming aids as possible. In this
chapter, each of the capabilities available in a VAL system are described
briefly.

3. 1 EXTERNAL COMMUNICATION

Terminal. ~~e standard VAL system uses an operator's console terminal and a
manual control box to input commands and data from the user. The operator's
console serves as the primary communication device and can be either a dis­
play terminal (CRT) or a printing terminal (TTY). To facilitate typing,
commcmds and instructions can be abbreviated, as shown in Appendix G.

Manual Control. The manual control box is used for moving the robot under
direct operator control and for teaching location data. Its switches can be
used to reposition individual joints of the robot, to change the position
and orientation of the tool relative to either World or Tool frames of
reference, and to selectively turn off servo control of individual joints;
allowing the operator to position the robot by hand.

Floppy Disk. The VAL system supports an optional minifloppy disk drive.
This is not required for operation of the system, but is· useful for offline
storage of programs and location data. Commands are provided for reading
and writing files containing user programs and their associated location
data. In addition, file maintenance commands for formatting and initial iz­
ing diskettes, and commands for listing diskette directories and deleting
files, are provided.

The disk drive can al so be used to read special diagnostic programs into the
system. These programs, written by Unimation Inc. and supplied on disk­
ettes, are used for isolating hardware problems.

Signal Lines. To synchronize· the robot with other devices, input and output
signal lines are provided. These lines can be sensed cmd set by user­
programs. They can be used for starting and stopping other equipment or for
controlling the robot using simple sensors of various types. These external
interlocks and sensor inputs are described in Chapter 5.

Page 3-2

3.2 THE VA.L OPERATING SYSTEM

THE VA.L SYSTEM

(

The top level
administers oper­
The second level

The computer in the controller has two levels of operation.
is called the VAL operating system, or monitor, because it
ationof the system , including interaction with the user.
is used for diagnostic work on the controller hardware.

3.2.1 The Monitor

The system monitor
memory (PROM) in
indefinitely, and
turned on. The
commands corne from
user programs.

is a computer program stored in programmable read-only
the Computer/Controller. PROM memory retains its contents
thus VAL is immediately available when the controller is
monitor is responsible for control of the robot, and its
the manual control unit, the system terminal, or from

To increase its versatility and flexibility, the VA.L l;\onitor can perform
most of its commands even while a user program is being executed. Commands
that can be processed in this way include those for controlling the status
of the system, defining robot locations, storing and retrieving information
on the floppy disk, arid creating and editing robot control programs.

. Some robot motions require the monitor to perform substantial computations.
When such motions are requested by user programs or from the manual control,
there is little or no computer time available to interact with the terminal.
This makes the monitor unresponsive, or even appear inactive. 1~en no pro­
gram is executing and the robot is not being controlled manually, the moni­
tor requires little overhead time and is very responsive to input from the
terminal.

Since some monitor commands cannot be processed while a program is execut­
ing, it is important to know the status of the monitor. This information is
provided by the prompt displayed when the system is accepting input. A dot
(".") is displayed as a prompt when the monitor is not executing a user pro­
gram. An asterisk (""''') prompt is displayed when a program is being execut­
ed. All the monitor commands can be processed when the dot prompt is given,
but certain commands are not accepted after an asterisk prompt as indicated
in Chapter 4.

Being able to continue to process commands while a program is executing can
be useful in many situations. User programs can be created, edited, and
stored. The speed of the robot can be modified. 'The system execution
status can be queried. And Iodation data can be modified or "touched up," a
most useful feature for many applications.

(
'>

(

THE VAL SYSTEM
The Operating System

3.2.2 Octal Debugging Tool

The second level of computer operation is not often used.
ging Tool (ODT) is used to communicate directly with the
and memory locations, which is very useful for diagnosing

Page 3-]

'I'he Octal Debug­
computer regist.ers
hardware problems.

are grouped to
set of instruc­
This manual is

the VAL program

ODT is a standard feature of the Digital Equipment Corporation LSI-11 com­
puter processor module ,and thus is always available for use. Some instruc­
tions for using ODT are presented in this manual where applicable. For com­
plete detail s on the capabil ities of ODT and the commands it accepts, refer
to the Digital Equipment Corporation "Microcomputer Processor Handbook."

3.3 USER-WRITTEN PROGRAMS

Just as a spoken language is based on a set of words that
convey a message, the VAL progra.mming language is based on a
tions that can be combined to describe complete robot tasks.
dedicated to explaining the meaning (that is, the effect) of
instructions.

In a normal application the motions and actions of the robot are controlled
by a program stored in the computer random-access memory (RAM). Such pro­
grams are created by the user for particular applications 1 and contain
instructions to the monitor telling it how the task is to be accomplished.
Such robot control programs are called "user programs" or "VAL programs"
(because they are written in the VAL program language).

Each line, or step, of a user program consists of a single VAL instruction
having an easily understood effect on the robot system. A user-written VAL
program is nothing more than th~t--an orderly collection of individual
instructions that direct the motions and actions of the robot.

'For convenience, the creation of a user program for a particular application
can be considered in two steps. One deals with the places to which the
robot is to move, referred to as Ipcations. The other step deals with
defining the robot motions between locations, and the actions at or between
locations. This step involves writing a program using VAL instructions, and
entering it into the system using the program editor.

3.3.1 Program Editor

VAL contains an easy-to-use program editor that allows the user to create or
modi fy robot control programs. ~.vhen using ·the editor, the user types the
desired information on the system terminal just as if on a typewriter. The
editor stores the lines in the system. Once a line has been stored, the
editor allows the user to return to that line to review it, change it, or
delete it entirely. The ability to modify user programs is an important
feature of the VAL editor.

Page 3-4 THE VAL SYSTEM
User-Written Programs

(

The program editor is a useful aid in program debugging since modifications
to programs can be made and tested very quickly. In fact, a program being
executed can be simultaneously edited. Thus, a program that follows a
repetitive cycle can be modified while executing, and the change takes
effect the next time the altered instructions are executed. This feature
might be used, for example, to fine tune the speed of execution of a program
on a step-by-step basis.

In addition to accepting textual material from the system terminal, the
editor has a simple mode of operation whereby a p~ogram step and location
definition are automatically generated each time the RECORD button on the
manual control unit is depressed. This is called teach mode. Each program
step produced this way consists of a motion instruction having as its desti­
nation the location of the robot tool at the time th8 button was pressed.
In this way, programs or segments of programs consisting of sequential
motion commands can be quickly entered. Subsequentl y, programs produced in
this manner can be modified using the standard editor commands.

3.3.2 Subroutines

To simplify the combination of existing task segments to define new tasks,
VAL programs can include subroutines. A subroutine is a separate program
containing a group of VAr~ instructions defining a task or p:Jrtion of a task.
The instructions in the subroutine do not appear in the referencing prQgram.
There is just an instruction causing program execution to branch to. the
subroutine. When execution of the subroutine is completed, VAL. returns to
the original program and continues. Subroutines can call other subroutines,
with up to ten such levels possible.

There are two main advantages to the USe of subroutines. If a sequence of
instructions appears several times in a program, they can be stored once as
a subroutine and logically included in the program any number of times with
subroutine call s. This can save considerable memory space. The second
advantage to the use of subroutines is the modularity they encourage.
Subroutines can be written for frequently encountered tasks, and combined
for indiv idua.l applications.

3.4 LOCATION VARIABLES

(

Data representing the position and
ferred to as robot locations.
represented in the system.

orientation of the robot tool are re­
There are two ways robot locations can be

THE VAL SYSTEM
Location Variables

3.4.1 Precision Points

P~ge 3-5

A location can be expressed in terms of the positions of the individual
robot joints, and is then called a precision point. This yields maximum
precision when the robot is directed to move to the location. Precision
points have the disadvantages of being robot dependent, and their components
cannot be manipulated during program execution.

3.4.2 Transformations

Al ternatively, locations can be expressed in terms of the Cartesian coordi­
nates (X, Y, Z) and orientation angles of the robot tool relative to a
reference frame fixed in the base of the robot. (This reference frame is
called the world coordinate system.) Such location variables are called
transformations, and provide a more intuitive representation of locations
than do precision points, since the comtonents are easily reI atedto the
workspace. Furthermore, since transformations only refer to the position
and orientation of the tool, they are independent of the geometry of the
robot •

.The use of transformations is especially advantageous where relative trans­
lations and rotations are to be performed. This is because the VAL system
provides means to easily alter components of transformations--with commands
entered at the terminal f and with instructions that can be included in user
programs. It is al so possible to use transformations to define locations
relative to other locations.

However, the use of transformations to define locations can at times be
somewhat inaccurate due to the complexity of the computations necessary to
convert between Cartesian world coordinates and joint variables. Thus, if
maximum precision is required, precision points should be used.

3.4.2.1 Compound Transformations - For applications requiring the defini­
tion of locations relative to other locations (or reference frames), com-
pound transformations are available. These transformations are written as
strings of transformation names separated by colons. The transformations
comprising a compound transformation are called relative transformations
because. they define locations relative to other locations. Comp:lund trans­
formations are discussed in Appendix A.

3.4.3 Defining Location Variables

Locations are stored in the system as named variables. That is, locations
are referred to by user-selected names, and the location corresponding to
any name can be changed if required. The names for precision points and
transformations can have an arbitrary number of characters. Each name must

Page 3-6 THE VAL SYSTEM
Location Variables

start with a letter and can contain only letters, numbers, and periods.
Precision-point names must always be preceded by the symbol "#" to dis­
tinguish ·them from transformation names. Thus, the same name can be used
for a prec ision point and a transformation (for example, #PART and PART).
The number of precision points and transformations that can be stored in the
system is limited only by the size of the system memory.

IDcation data can be defined and modified using any of a number of methods
prov ided in VAL. The robot tool location can be recorded using the manual
control RECORD button as mentioned above. Monitor commands provide means
for defining and modifying locations, and they can be defined whil e program
statements are being typed to the program editor. Finally, locations can be
defined and modified dynamically during execution of user programs. The
commands and program instructions for location definition and modification
are decribed in Chapters 4 and 5.

When the term "location" is used in this manual, it is meant to refer to any
of the above location-variable types unless there is a statement to the con­
trary. That is, when a location is called for, one can usually use a preci­
sion point, a transformation, or a compound transformation.

3.5 PROGRAM EXECUTION

orice a user program has been entered into the VAL system, it is possible to
execute the program once, a number of times, or indefinitely. Manual con­
trols can be used to halt programs immediately, or after completion of the
current step. Programs can be hal ted by command from the console, and can
be executed a single step at a time for debugging purposes.

After a program has hal ted as a result of a command, push
unexpected runtime error condition, it is normally possible
cution without restarting the program from the beginning.
any problems have been corrected, program execution can be
at the step interrupted or at the following program step.

button, or an
to continue exe­
That is, after
continued either

AS aids to program development f VAL contains a command for slowing the speed
of execution of an entire user program. Also, a monitor command can be used
t.o execute a single VAL instruction. For example, it can be used to move
the robot to named locations without having to create separate one-step
programs.

3.5.1 System Interrogation

A monitor command can be used to determine the status of the user program
currently executing. This command displays data including the number of
times the program has executed, and information on the program step current­
ly being executed. If the main program has called one or more levels of
subroutines, information regarding the status of each of the subroutines is

(
'.

THE VAL SYSTEM

Program Execution

Page 3-7

given. The overall speed setting and the current tool transformation
assignment are also displayed.

Commands are also provided for displaying user programs on the system termi­
nal, displaying and altering the state of system operational options, and
displaying current memory space usage.

In addition to these means of interrogating the system,
available for displaying information from user programs.
generate messages to the operator.

3. 6 TRAJECTORY CONTROL

instructions are
Thus, programs can

VAL uses two different methods to control the path a robot follows from one
location to another. These' "traj ectory generation" methods differ with res­
pect to computational accuracy and speed, and can be classified according to
the type of path the tool tip moves along. The methods either (1) interpo­
late between the initial and final];Osition of each joint" producing a
corn pI icated tool-tip curve in space, or (2) move the tool tip along a
straight-line path.

Neither method is ideal in the sense it !'roduces an optimal path
applications. With VAL, the user can choose what type of motion is
each robot motion. Also, the continuous-path feature can be used
the robot perform any consecutive motions as a smoothly connected

for all
used for
to have

sequence.

The trajectory generation methods are described below. Note' that the
interpretation of motion speed is different, for the two types of motion.,

3.6.1 Joint-In'terpolated Motion

Joint-interpolated motions are produced by interpolating each joint control
variable (joint angle, for example) from its initial value to its desired
final value. All the joint variables are interpolated to make the joints
complete their motions simultaneously, and the total motion time is set to
that of the joint requiring the longest time to complete its motion. Joint­
interpolated motions move each joint the minimum amount required to achieve
the desired final p:)sition, and thus move the robot tool along controlled,
predictable paths. Also, joint-interpolated· motions provide the fastest
response of the robot.

For joint-interpolated motions the monitor and program speed settings are
combined to determine the fraction of maximum acceleration and speed at
which the joints are driven. Assuming its motion is large enough, each
joint is accelerated to a constant speed, moved at that speed, and then
decelerated to its final position.

Page 3-8 THE VAL SYSTEM
Trajectory Control

(

While the path is predictable, major drawbacks of joint-interpolated motion
for robots with rotating joints are -that the robot tool moves along a com­
plex curve in space, and the speed at which the tool moves is not constant
during the motion.

3.6.2 Straight-Line Motion

Straight-line motions are produced by applying an interpolating function to
the world-coordinate location of the robot tool and rapidly transforming the
interpolated tool location to joint commands. This type of motion is useful
when the robot tool must move relative to an external object, or under com­
mand from a sensor. An example of the first si tua tion is a robot performing
a precision insertion, where the relative motion required between the robot
and the workpiece is along a straight line.

An example of moving lmder sensor control is visually-controlled arc weld­
ing, where the robot tool path is continuously corrected using information
from a camera. Since feedback from the camera is typically an incremental
correction signal in the X, Y, or Z position of the welding tip in the world
coordinate system, it is very convenient to have this correction added to
the command produced by the cartesian interpolation function.

The motion speed of the robot tool tip can be accurately controlled when
straight-line motion is used because the system interprets the commanded
motion speed as a Cartesian speed. That is, the joints of the robot are
driven in such a. way that the tool tip accelerates to a constant speed,
travels at the constant speed, and decelerates to its final position.
During the motion, the tool is -smoothly rotated from its initial orientation
to its final orientation. Under limited circumstances a joint speed
required to maintain a constant tool speed is greater than the joint maximum
speed. If this occurs, the joint is driven at its maximum speed, and all
the other joints are slowed to compensate so the tool follows a straight­
line path, although at a speed slower than requested.

Straight-line motions have the disadvantage of being slower than correspond­
ing joint-interpolated motions, and thus straight-line motions should only
be used where needed for path control or tool speed control. At all other
times, joint-·interpolated motions should be employed. This is particularly
significant when continuous-path motions are being performed.

3.6.3 Enhanced Trajectory Control

vfuen moving a robot tool to a desired location, often no direct path exists
a.nd motions to several intermediate locations must be performed. For exam­
ple, tools must normally be withdrawn from the location where they were last
used. And it is often necessary to approach new work locations from a dif­
ferent direction than would be produced if a direct approach were taken. To
reduce the number of locations that must be explicitly taught in such

(

i
'\

THE VAL SYSTEM
Trajectory Control

Page 3-9

situations (and the memory required to store extra locations), the V~L

langucLge incl udes instructions for producing motions to retract the tool,
and to locate the tool above a final destination. These "departure" and
"approach" motions are performed relative to the current tool location f or a
specified location, respectively, and greatly facilitate the development of
subroutines to perform common operations.

Since no activity takes place at departure and approach locations, or at any
locations introduced to avoid obstacles f it is often undesirable for the
robot to stop at these locations. Stoppi'ng would waste time and introduce
unnecessary accelerations to an object being carried by the tool. In appli­
cations such as arc welding f stopping at each location is more than undesir·­
able, it is disastrous because such applications require that the tool be
kept in motion, often at a preprogrammed, controlled speed. For these situ­
ations VAL has a continuous-path feature that smoothly transitions between
adj acent motions; subj ect to the maximum allowable accelerations of the
robot. Such transitions can occur between any combination of straight-line
and joint-interpolated motions.

(

/
\,

CHAPTER 4

MONITOR COMMANDS

This chapter presents all the commands recognized by the VAL monitor. The
following information is provided for each command: (1) the command syntax
(ref<3r to the Section 1.3, Notation, for meanings of angle and square brack­
ets); (2) an indication of when the command can be issued; (3) a descrip­
tion of the function performed by,the command; and, (4) if the command
takes arguments, a representative example of how the command might look when
typed, with an explanation of its effect.

When a command is typed, spaces are optional except that at least one space
is required after the command name and between elements not otherwise separ­
ated (for example, with a comma or equals sign); indicated commas must be
provided as necessary to correctly position the arguments (refer to ,Section
1.3, Notation).

4.1 DEFINING LOCATIONS

There are several commands that can be used for defining locations and
determining the current location of the robot. In the following commands,
all distances are to be in millimeters, and each "location" argument can be
satisfied with either a precision point I a transformation, or a compound
transformation.

The names for precision points and transformations can have an arbitrary
number of characters. Each name must start with a letter and can contain
only letters, numbers, and periods. Precision-point names must always be
preceded by ,the symbol "# rr to distinguished them from transformation names.

POINT <transformation> [= <transformation 2>] [: <transformation n>]
or POINT <precision point> [= <precision point 2>]

[.*] Sets the value of the location variable on the left equal to that
of the variable on the right. If the second variable is not specified,
the value of the first variable is either left unchanged, or set equal to
a default value if it was previously undefined.

The value of the first variable is displayed and its components may be
modified by typing new val ues after the query "CHANGE?". Component
values must be separated by commas, and values not to be changed may be
omitted. Changes are asked for continuously until no change is made. If
a precision point is being defined, all its joint variables are

Page 4-2 MONITOR COMMANDS
Defining Locations

(

displayed. otherwise a transformation is being defined, and its val ue is
displayed as X, Y, Z, 0,7\, T, where X, Y, Z specify the position of a
point centrally located between the finger tips in world coordinates, and
0, A, T specify the orientation of the hand (Euler angles in degrees).
With all three angles zero, the hand points in the negative Y direction
with the fingers in a horizontal plane. An orientation vector which
points from one finger tip to the other is parallel to the X axis.
o specifies a rotation of the orientation vector about a vertical direc­
tion. Thus at 0=90 0

, the hand, still horizontal, would point along
the positive X direction. A is a rotation about the orientation vec­
tor • with A = 90 0

, the hand always points straight down. '], is a
final rotation about the axis of the wrist and corresponds to a rotation
of the final joint,

.... ".•,Y'.'I".\,.'i ('ri':.,.~:

POINT PICK1 = PICK

POINT #PARK

Sets the val ue of transformat~n PICK1 equal to that
of transformation PICK, ~~ allow for changes.

Prepares for definition orm~dification of the pre-
cision point PARK. \

..~

DPOINT [<location 1>] "", [<location n>]

[. *] Deletes the values of an arbitrary number of location variables
(precision pJints and/or transformations, but not compound transforma­
tions). This operation can be used to recover most of the memory storage
required by location variables no longer needed. Deleted locations can­
not be listed using any of the output routines; attempts to reference
such variables within program instructions generate error messages at
execution time until their values are redefined.

DPOINT PICK,#PLACE

HERE <location>

Deletes the values of transformation PICK and pre­
cision point PLACE.

[.*] Defines the value of a transformation or precision point to be
equal to the current robot location. As with POINT, post modification of
the location coordinates is permitted.

Only the right-most transformation of
defined. An error message results if any
a compound transformation are not already

a comp:>und
of the other
defined.

transformation is
transformations in

HERE PLACE

HERE #PICK

Defines the transformation PLACE to be equal to the
current robot location.

Assigns the curr~nt location of the robot to the
precision point PICK.

,I

MONITOR COMMANDS
Defining Locations

Page 4-3

'NH~~'

\tV I") 0::::'1' e
WHERE

I,

J0/ 1v'">

[.*] Displays the current location of the robot in Cartesian world coor­
dinates and joint variables, together with--the current hand opening if
the robot is equipped with a position-servoed hand. (Note that some
joint angle values displayed are shifted·bY 360°. That is, a value shown
as 170 ° can also be interpretted as -.l90 0.)

TEACH <location>

[.*] This command is used for recording a series of location values
under the control of t~e: RECORD button on the manual control unit. Each
time the RECORD button is depressed, one location variable is defined and
given the value corresponding to the location of the robot at the instant.
the RECORD button is pressed. Eacll successive location variable is auto­
matically assigned a name which is the result of concatenating the base
name (specified by the argument to this command) together with a number
one larger than that for the previous location variable. (For example,
if the command "TEACH P1" is typed, the first recorded location variable
is P1/ the next P2, followed by P3, and so forth.) If a compound

. transformation is specified ,the right-most transformation is operated
upon.

The display on the. manual control box blinks when the RECORD button
.pressed to signal the user that the location has been recorded.
mode is terminated by pressing the RETURN key on the terminal.

is
This

Not~ that there are other teaching commands that permit the creation of
motion instructions at the same time as defining locations. These
commands (T and TS) are described in Section 4.2, Program Editing.

TEACH WELD1 Initiates monitor teach mode so that when the RECORD
button on the manual control is pressed, transforma­
tions WELD1, WELD2, etc. are defined, consecutively,
as the robot location at the instant the button is
pressed.

BASE [<dX>], [<dY>], [<dZ», [<Z rotation»

[.] When the VAL system is initialized, the origin of the reference
frame of the robot is assumed to be located at the intersection of the
axes of joints 1 and 2, with the X, Y, and Z axes fixed in space.
This command offsets and rotates the reference frame as specified. A de­
fault value of zero is assumed for any omitted argument. (Refer to the
hardware manual for your robot for the directions of these axes.)

If, after locations have been defined by trqnsformations relative to the
robot reference frame, the robot is moved relative to those locations--to
a point [<dX>,<dY>,<dZ>] in the reference frame, and rotated <Z rotation>
degrees about the Z axis--the BASE command can be used to compensate so

Page 4-4

that motions to the
desired. Note that
precision points.

MONITOR COMMANDS
Defining Locations

previously defined locations will still be as
this command has no effect on locations defined as

A convenient use for this command is to realign the .coordinate axes so
.. 1(JI.~:·~'>:.'"

that SHIFT and DRAW instructions cause displacem~nts in desired, non-
standard directions.

BASE 300,,-50,30

TOOL [<transformation>]

Redefine the world reference frame because the robot
has been shifted 300 mm in the positive X direction
and 50 mm in the negative Z direction, and has
been rotated 30 degrees about the Z axis, from its
initial location and orientation.

[.] The internal matrix used to represent the location and orientation
of the tool tip relative to the location and orientation of the tool
mounting flange of the robot is set equal to the value of the specified
transformation. If no transformation is specified, the tooL transforma­
tion is set equal to the value of the "null tool." The null tool has its
center at the surface of the tool mounting flange and its coordinate axes
parallel to that of the last joint. of the robot (it is represented by the
transformation [0,0,0,90,-90,OJ). The tool transformation is automati­
cally set equal to that of the null tool on system power up, and after a
ZERO command. See Appendix B for an examples of the use of tool trans­
formation!, •

The relative tool transformation is automatically taken into considera­
tion each time the position of the robot is requested, when a command is
issued to move the robot to a location defined by a transformation, and
when manually-controlled motions are performed in world or tool coordi­
nates. Note that if the tool transformation is modified after the TOOL
command is issued, the change does not affect motions of the robot until
the TOOL command is reissued.

(

function can be issued as
instruction. However,

the manual control is in

This
gram
when

TOOL HAND

a top-level monitor command or as a pro­
the monitor TOOL command cannot be issued

either TOOL or WORLD mode.

Replaces the current tool transformation assignment
with the value of the transformation HAND.

MONI'rOR COMMANDS

4.2 PROGRAM EDITING

Page 4-5

As mentioned previously, user written programs are used to
motions and actions of the robot. The commands associated
editor are explained in this section. These editing commands
for creating and modifying user programs.

direct the
with the VAL

can be used

Programs are referred to by names consisting of an arbitrary number of char­
acters.. Like lqcation variables ,program names must begin with a letter and
can be followed by any sequence of letters, numbers, and periods. The
number of programs that can be stored is limited only by the amount of
system memory available.

Each instruction within a program is referred to by a unique step number.
Steps are numbered consecutively and the numbers are automatically adjusted
by the editor whenever instructions are inserted or deleted. Because these
step numbers are likely to be changed as a program evolves, they would not
be useful for identifying steps for program-controlled branching. For this
use program steps can contain step labels, which are integer numbers ranging
from 0 to 32767.

The complete format of a program step is

<step number> [<label> <space» <instruction name> [<space> <arguments>]

Note that when a line is entered into the system, extra spaces can be enter­
ed between any elements in the line; those indicated above are the minimum

'\
required. The VAL editor always adds or deletes spaces in program lines' to
make them conform with its standard spacing.

The first editor command below is used to start an editing session.
the other commands are used to view the program and make changes.

EDIT [<program», [<step>]

Then

(.*] Permits the user to create or modify the program named <program>,
starting at the indicated step. If no step number is specified, editing
proceeds from the first step of the program. If no program is specified ,­
the last program edited is reopened; if the step number is al so omitted"
edi-ting proceeds from the step before where the last editing session was
terminated.

Eon' ASSEMBLY Accesses the program named ASSEMBLY for editing, at
its first step if the program does not currently'
exist, or was not the last program edited;
otherwise editing starts at the step preceding the
one at which editing was last terminated.

Page 4-6

<any program instruction>

MONITOR COMMANDS
Program Editing

(

[• *]

tion
typed

Stores the program instruction at the current step. ,If an instruc­
is already present at the step, it is replaced by the instruction
in. The next step is then displayed for editing.

<carriage return>

[.*] Typing an empty line (that is, pressing just the RETURN key) leaves
th~ current step unaltered and displays the next instruction for editing.
If the current step contains no instruction, the command is ignored.

C <program> , [<ste p>]

[. *] Changes editing from the current program to a new user
starting at the indicated step. <Step> can be omitted, and
begins with the first instruction of the program. Note that this
has the effect of an E command followed by an EDIT command.

program
editing
command

C DRUM

D [<nstep> J

Changes ·to the program named DRUM at its first step.

(

[.*] Deletes the specified number of instructions starting with the cur­
rent instruction. If nstep is not specified only the current step is
deleted. All subsequent steps are automatically renumbered.

E

[.*1 Exits EDIT mode and returns to MONITOR mode.

I

I,

[.*] Moves instructions (starting at the
and inserts the program instruction typed
matically repeated until an empty line is
RETURN key is pressed).

current step) down one step,
in next. This process is auto­
entered (that is, just the

[.*] Leaves the current step unaltered and displays the previous step
for editing.

./

MONITOR COMMANDS
Program Editing

P [<nst:ep>]

Page 4-7

[.*] Displays the next <nstep> program steps and sets the current
number equal to that of the last line displayed. If omitted,
defaults to one.

R <character string>

line
nstep

[.*1 Replaces characters in the currently displayed program instruction.
Starting at the location under which the "R" is typed, the program
instruction is replaced character for character. A space character must
separate the name of this function (that is, "R") from the character
string. The first character substituted is the character following the

.space character, and the substitution process continues until the RETURN
key is pressed. As soon as RETURN is typed, an attempt is made to
reinterpret the program instruction. Thus the resulting text must be a
valid program instruction after the substitution is performed.

For example, the command "R 123" would replace the character under which
the "R" was typed with a "1" and the following two characters with
"2" and "3", respectively.

S [<step>]

[.*] Leaves the current step unaltered and displays the
the indicated step in the user program. If no step is
instruction of the program is displayed for editing.

T <location>

instruction at
given, the first

[. *] Initiates" joint-interpolat.ed" program-teach mode. In this mode,
each time the RECORD button on the manual control box is depressed, a
MOVET instruction is inserted irito the program being edited. The
instruction generated contains as its arguments a location variable (with
its name derived from that supplied to this command) and the current hand
opening. The value of the location variable is set equal to the tool
position and orientation at the time the RECORD button is pressed.,
Successive variables are assigned names in exactly the same manner as
with the monitor TEACH command. That is, each name is a concatenation of
the base variable name and a number. The suffix number is incremented
each time a new instruction is generated. (See the TEACH command for an
example of how names are produced.) By sl.lccessively manually positioning
the robot and pressing the RECORD button, a complete motion task can be
taught. The display on the manual control box blinks when the RECORD
butt:on is pressed to signal the user that the location has been recorded.
Teach mode is terminated by pressing RETURN··on the terminal keyboard.

Page 4-8

T #WELD1

TS <location>

MONITOR COMMANDS
Program Editing

Initiates program teach mode so that when the RECORD
button on the manual control is pressed, a
joint-interpolated motion instruction is generated
for motion to the robot location at that instant,
with the locations to be defined by precision points
WELD1, WELD2, etc., consecutively.

(

[.*] Initiates "straight-line" program-teach mode. This mode is like
.. joint" teach mode above, except that a MOVEST instruction is generated
each time the RECORD button on the manual control box is depressed.
Thus, when the program is executed, there is straight-line motion to the
corresponding location rather than joint-inteq::Qlated motion. As with
the other teach modes, the RETURN key on the terminal keyboard is
pressed to terminate this mode.

TS SPOT 1 Initiates program teach mode so that when the RECORD
button on the manual control is pressed, a
straight-line motion instruction is generated for
motion . to the robot 10cat.i.ol1. .at that instant, with
the locations to be defined by transformations
SPOT 1, SroT2, etc., consecutively.

4.3 PROGRAM AND LOCATION-DATA LISTING

The following commands are used to view programs and the val ues of location
variables. The execution of these commands can be aborted by pressing the
RETURN key on the terminal keyboard.

DIRECTORY

[.*] Displays the names of all user programs in the system memory that
have at least one program step defined.

LISTL [<location 1>] , ••. , [<location n>]

[.*] Displays the values of the listed location variables. If no
location-variable nam8S are specified, the values of all defined location
variables are displayed.

LISTL PICK,#PLACE Displays the values of transformation PICK and
precision FOint PLACE on the system terminal.

(

MONITOR COMMANDS
Program and Location-Data Listing

LISTP [<program 1>J ,~ •• , [<program n>l

Page 4-9

[.*J Displays all the steps of the listed user programs. If no program
names are specified, all programs with at least one program step defined
are listed.

LISTP ASSEMBLY,MarOR Displays the programs named ASSEMBLY and MarOR on
the system terminal.

4.4 PROGRAM AND LOCATION-DATA STORAGE

The following commands are used to store and retrieve user programs and
location data on minifloppy diskettes.

The diskette is logically divided into files, which are referred to by names
with six or fewer characters. File names must begin with a letter followed
by any combination of letters and numbers. Files containing user programs
are distinguished from files containing location data: program file names
have the extension ".PG" appended, while location-data file names end w:Lth
the extension" .LC". These file-name extensions are automatically added to
the six""'character file name typed by the user and therefore do not have to
be typed. (The one exception to thi s rule is the DELETE command.) Fil e
names must always be unique for any given diskette; however, it is possible
to create one program file and one location-data file with the same name
since each is assigned a different file extension.

In all cases where an operation may result in destructively writing over
valid data contained on the diskette, verification is first requested before
the operation is performed. The execution of these commands can be aborted
by pressing the RETURN key at any time.

Certain precautions should be taken when using floppy diskettes ·to make sure.
they are not damaged and their data not lost. The diskettes are fragile and
particularly susceptible to bending. Thus, care should be exercised when
handling diskettes, especially when inserting them into the disk drive.

TO INSERT A DISKETTE

1" Make sure the hole in the center of the diskette is approximately
centered in the opening of the envelop.

2. Hold the diskette with the arrow on the top and pointing toward the
drive.

3. Open the door of the drive and gently slip the disk into the slot
until you feel it detent into position.

4. Gently close the door.

Page 4-10 MONITOR COMMANDS
Program and Location-Data Storage

The following precautions should also be observed:

1. Do not touch the recording surface of diskettes.

2. Do not expose diskettes to large magnetic fields.

3. Do not write on diskette identification labels with a ball-point
pen or pencil. Use only a felt-tip pen.

4. Do not use an eraser on diskette identification labels.

5. Do not fold or bend diskettes.

6. Do not place paper clips or rubber bands on diskettes.

7. Do not place heavy obj eets on a diskette.

8. Do not leave diskettes out of protective envelopes when not in use.

9. 00 not leave diskettes near CRT terminal s.

10. 00 not expose diskettes to excessive environmental conditions.
Allowable conditions for operating and storage:

10°C to 52°C (50°F to 125°F)
20% to 8D% RH with no condensation

Allowable conditions for shipping:
-40°C to 52°C (-40°F to 125°F)
5% to 95% RH with no condensation

Diskettes must be acclimitized to operating temperature for at
least one hour before use.

The useful life of a diskette is limited since the read/write head of the
disk drive contacts the diskette during data transfers. (The red light on
the front of the disk drive indicates when the head is in contact with the
diskette.) The rated life of diskettes is about 150 hours of head contact
time. Under normal circumstances, this should correspond to several hundred
read/Write cycles.

CAUTION

When using the floppy-disk drive, never open its access door while
the red light on its front panel is on. This light indicates that
the drive is in an active state, and should not be disturbed.

FORMAT

/
(

[.*] This command must always be executed before a new diskette can be
used for storing programs or data. It creates the fil e directory and has (\
the effect of erasing the entire diskette by writing over any information
that it may contain.

MONITOR COMMANDS
Program and Location-Data Storage

LISTF

Page 4-11

[.*] Displays the file directory of the diskette currently loaded in the
minifloppy disk, and the amotmt of space still available for storage.

STOREP <file> [= <program 1», •.. , [<program n»

[.*] Stores the specified programs in the indicated disk file. If no
program names are given, all the programs in memory are saved in the disk
file.

STOREP F 1=CYCLE Stores the program named CYCLE into a floppy-disk
file to be named F1.PG.

STOREL <file> [= <program 1» , ••• ,«program n>]

[. ~,] Stores the names and val ues of all the location variables refer­
enced in the specified user programs. If no programs are specified, all
location variables with defined values are stored in the disk file.

STOREL F2=MOTOR Stores all the.location variables referenced by the
program named MOTOR into a floppy-disk file to be
named F2. r.c.

STORE <file> [= <program 1>] , ••• ,[<program n>]

[.*] Stores the specified programs, and the location variables they
reference, in a program file and a location file, each with the specified
name. If no program names are given, all the programs and location vari-
ables in memory are saved in the disk files. Note that this command is
equivalent to a STOREP command followed by a STOREL command.

STORE F3=CYCLE,MarOR

LOADP <file>

Stores the two programs into a file named F3.PG,
and stores all the location variables they
reference into a file named F3.Le.

[.*] Loads the program (s) contained in the indicated disk file into the
system memory. If a program already exists in memory which has the same
name as one contained in the disk file, it is deleted and replaced by the
program on the diskette.

IDADP F 1 Loads all the programs in floppy-disk file F1.PG
into the system memory.

Page 4-12

LOADL <file>

MONITOR COMMANDS
Program and Location-Data Storage

[.*] Loads all the location variables contained in the specified disk
file into the system memory. Ifa location variable is already defined
in memory and a variable with the same name is contained in the disk
file, the value in memory is replaced by the value read from the disk­
e'tte.

LOADL F2

LOAD <file>

Loads all the location variables in floppy-disk file
F2.LC into the system memory.

[.*] Loads the programs and location variables contained in <file>. PG

and <file>. LC into the system memory. If a program or location variable
already exists in memory, which has the same name as one contained in a
disk file, it is deleted and replaced by the information on the diskette.
Note that this command is equivalent to a LOADP command followed by a
LOADL command.

LOA.D F3

DELETE <file><ext>

Loads all the programs contained in file F3.PG, and
the location variables contained in file F3. LC, into
the system memory.

[.*) After requesting aonfirmation, deletes the specified file from the
diskette. For this command, the file name and extension (". PG" for
program files and ".LC" for location data files) must be given. For
example, to delete a file which was produced by the command II STOREP A",
type "DELETE A. PG" •

DELETE F3. LC

COMPRESS

If the user responds' with a "Y"
confirmation prompt, del etes
named F3. LC.

to the subsequent
the floppy-disk file

[.*] The floppy-disk system uses a file structure in which files are
allocated space on the diskette sequentially. Thus, deleting a file
creates an unavailable area on the diskette. The COMPRESS command
repacks the files and recovers any space made unavailable by earlier file
deletion.

ERASE

[.*] Erases the contents of the floppy Q1skette and initializes the
diskette file-directory information.

MONITOR COMMANDS

4.5 PROGR~~ CONTROL

Page 4-13

The following commands are used for controlling execution of user programs
and individual program instructions.

SPEED <value>

[.*] Specifies the speed of all subsequent robot motions that are
program control. The value for the speed can :range from 0.01 (very
to 327.67 (very fast), where 100 is "normal" speed. (This monitor
parameter is set to 100 when the system is initialized.)

under
slow)
speed

The speed at which robot motion occurs is related to the product of t:he
s:peed set by this monitor command and ,the speed set by a program SPE:ED
instruction. For example, if the monitor speed value is 50 and the pr'o­
gram instruction speed setting is 60, the robot moves at approximately
30% of i,ts "normal" speed. Note that motion speed has different meanings
for joint-interpolated motions and straight-line motions (refer to
Section 3.6, Trajectory Control) •

SPEED 30 Sets the monitor speed parameter to 30% of "normal."

EXECurE [<program>] , [<nloop>] , [< step> J

[.,] Executes the specified user program <nloop> times. A loop is termi­
nated when either a STOP instruction or the ,last defined step of the pro­
gram is encountered. The value of nloop can range from -32768 to 32767.
Negative values for nloop put the program into a continuous loop. If
nloop is omitted or zero, the program is executed one time. If no
program is specified, execution of the last user program EXECurE'd is
reinitiated. If a step is specified, the motion program begins execution
at that step for the first pass, otherwise, ,the program starts execution
at step 1. Successive passes always begin at the start of the program.

EXECUI'E ASSEMBLY,-1

ABORT

Initiates execution of the program named ASSEMBLY,
with execution to continue indefinitely (until the
user aborts its execution I a HALT instruction is
executed, or a run-time error occurs) •

,I
[*] Terminates program execution after completion of the step currently
being executed.

Page 4-14

NEXT [<program>], [<nloop>] ,[<step>]

MONITOR COMMANDS

Program Control

[.] Controls program single-step-execution mode. If any of the three
optional arguments are specified, program execution is initiated in
exactly the same manner as for the EXEcarE command. Unlike the EXECt1rE
command, however, program execution is halted immediately after the first
progrffin instruction is completen. If all three arguments are omitted,
the next program instruction is executed and the program is again halted.
As with the PROCEED and RETRY commands (described below), a NEXT command
with no arguments can only be executed after a PAUSE instruction, a
non-fatal run-time error, or after single-step execution of the preceding
program instruction.

NEXT ASSEMBLY" 23 Executes only step n~~ber 23 of program ASSEMBLY.

DO [<program instruction>]

[.] Executes the single specified program instruction as though it were
the next step in a program. This command can be used to move the robot
(for example, DO MOVE T 1) or to al ter the sequence of prOgram" step execu­
tion (for example, DO GOTO 100). If no instruction is specified, the
instruction specified by the preceding DO is performed once again. (
DO MOVE SAFE. POSITION

PROCEED

Causes the robot to move to the location
defined by the transformation SAFE. POSITION by
means of a joint-interpolated motion.

[.*] Proceeds execution of the user program at the step following the
one where execution was halted due to a PAUSE instruction, an ABORT com­
mand, or a. run-time error. If a program is currentl y running but is in a
WAIT loop (that is, waiting for an external signal to be received) typing
PROCEED has the effect of skipping over the WAIT instruction. This com­
mand has no effect if a program is executing but is not in a WAIT loop.

RETRY

[.] Restarts program execution after a run-time error similar to the
PROCEED command. After a RETRY command, however, execution resumes at
the previously executed instruction step. This allows the user to RETRY
a step that has been aborted.

When a program terminates execution due to a PAUSE, STOP, or HALT instruc­
tion, or from any of a number of run-time errors, a message is displayed on
·the terminal. To indicate where in the program the termination occurred,
the message is followed by "STOPPED AT STEP <step>" or, if termination
occurred during execution of a program subroutine, "STOPPED AT <subroutine

MONITOR COMMANDS
Program Control

Page 4-15

name>- <step>." In both cases, <step> is the program step number of the step
immediately following the instruction at which execution stopped.

4.6 SYSTEM STATUS AND CONTROL

A number of commands can be used to determine the current state of the VAL
system, to initial ize it, and to terminate its execution. These commands
are described below.

CALIBRATE

[.] Calibrates the joint-position sensors in the PUMA and PUMA 250 robot
sys·tems. Although the system· can be run under manual or program control
while uncalibrated, it is recommended that the CALIBRATE command be exe­
cuted ap soon as possible after power-up. (The robot becomes un.­
calibrated whenever system power is switched off; if the monitor program
is restarted [see the DONE command below]; and, for the PUMA 250 robot,
when the LIMP command is executed.)

For the PUMA robot, the CALIBRATE command can be issued when the robot is
at any location within its working range, and causes all the robot joints
to be driven a small amount. For the PUMA 250 robot, the robot must be
in its nest, and the CALIBRATE command drives the robot out qf the nest a
short distance.

LIMP

[.J This command is used in the PUMA 250 robot system to assist with
m~!ing the robot into its nest. After requesting confirmation, all the
robot joints become limp and can be manually moved to any. position within
their hardware limit stops. Control is returned to VAL by pressing the
RErrURN key, at which time the system assumes that the robot is in it.s
nest and resets the joint. servos-.

CAUTION

If the robot is not in the nest when the RETURN key is pr.essed,
subsequent motions will be erratic. Note that the robot is
left uncalibrated after this command is executed.

STATUS

[.*J Displays status information for the user program being executed.
This includes the name of the tool transformation in effect; the program
(illld subroutine) step(s) being executed; the speed set by the monitor
SPEED command; and the number of program EXECurE loops completed, and

those still remainlng.
EXECUTE loop (that
display of the number
[n = 1,2, ••• J since

Page 4-16

FREE

MONITOR COMMANDS
System Status and Control

Note that if the program is in an infinite
is, if a negative val ue was given for "nloop"), the
of loops completed can be off by 32,767*n counts
the loop counter is permitted to overflow.

I,

[• *]

(As
area

ZERO

[.]

user
asks

DONE

Displays the percentage of available memory not currently in use.
the available memory is being added up, a simple check of the Whole
is made to ensure that the bookkeeping tags are consistent.)

Reinitializes the VAL system and deletes all defined locations and
programs. Since this is a totally destructive operation, it first

for confirmation that the operation is to be performed.

[.] Causes the MONITOR program (that is, VAL) to stop, and the system to
exit to the computer hardware debugging feature, the OCtal Debugging Tool
(ODT). The MONITOR program can be restarted by starting execution at
memory location 173,000 (that is, by typing 173000G when the "@" prompt
is displayed).

4 .. 7 SYSTEM SWITCHES

Several system switches govern various features of the VAL system. The
switches, and commands that set and display their states, are described
below.

MESSAGES Controls whether output messages from TYPE and TYPEI instructions
will be displayed on the terminal. Message output from PAUSE,
HALT, and STOP instructions is not affected by this switch. The
default setting of this switch is ENABLE'd.

CRT For terminals with a RUBOUT key instead of a BACKSPACE key this
switch can be ENABLE'd to have RUBOUT have the desired effect.
This switch is DISABLE'd at startup.

SRV.ERR 'rurns on the automatic monitoring of special hardware error condi­
tions generated by the joint servos. Initially this switch is
DISABLE 'd.

/'
1
\

MONITOR COMMANDS
System Switches

Page 4-17

CP

EHAND

VISION

This switch can be used to turn off continuous-path processing
(see Appendix C). This switch is initially ENABLE 'd.

For systems with a servo-controlled hand, this s~l7itch determines
whether the system should send cornmandsto the joint controller
for the hand. When this switch is DISABLED' d, the system only
responds to hand-control instructions by sending signals to i:he
pneumatic solenoid valves.

Operates only when the VISION option is installed. ENABLE' ing
this switch initializes the V1Slon software and establishes the
communication link to the vision subsystem. When this switch is
DISABLE'd, which is the initial setting, vision instructions axe
prohibited from being executed.

Hf4/ - H1-,,:v.;)

ENABLE <switch> or DISABLE <switch>

[. *J Turns system switches on and off, respectively. When referring to
a switch, its name can be abbreviated to the minimum length required to
define it uniquely.

ENABLE MESSAGES Turns on' the MESSAGES switch.

SWITCH [<switch>], ••• , [<switch>]

[.*] Displays the setting of one or more system switches. If no
switches are specified, the settings of all switches are displayed.

SWITCH CRT, CP Displays the settings of the CRT and CP switches.

(

(
\

CRAPI'ER 5

PROGRAM INSTRUCTIONS

The following sections oescribe the instructions which can be included in
user-written programs.

5. 1 ROBOT CONFIGURATION CONTROL

For an. anthropomorphic, six-joint robot, most points in its workspace can be
reached by assuming one of eight possible spatial configurations. Normally,
the robot remains in the configuration in which it starts when the user pro­
gram begins execution, or continues from a PAUSE instruction or run-time
error. The only exceptions are (1) when a READY instruction is executed,
(2) when a specific change in configuration is requested by the user program
through execution of any of the instructions below, or (3) when the robot is
forced to change from FLIP to NOFLIP or vice versa to keep joint 4 or 6
within stop limits.

When the user specifies a change in robot configuration" the requested
change is accomplished during execution of the next motion instruction (that
is, MOVE, MOVET, APPRO~ or DEPART). Note that no configuration change is
permitted during a straight-line motion, and that the DELAY iristruction has
the effect of cancelling a pending configuration change.

NOTE

Since the robot normally does not change configuration when a pro­
gram begins execution, it is often good practice to begin programs
with an initialization sequence that specifies the configuration
to be used. (This is especially important when a PUMA 500 or 600
robot is going to start at the READY location, since the configu­
ration at that location is ambiguous.)

RIGHTY or LEFTY

Requests a change in the robot configuration so that the first three
joints of the robot resemble a human's right or left arm, respectively.

Page 5-2 PROGRAM INSTRUCTIONS
Robot Configuration Control

ABOVE or BELOW

Requests a change in robot configuration so that the "elbow" of the robot
is J?Ointe'd up (ABOVE) or down (BELOW).

FLIP or NOFLIP

Changes the range of operation of joint 5 to positive (NOFLIP) or nega­
tive (FLIP) angles. (Not applicable to the PUMA 500 robot.)

5 •. 2 MarION

In the following motion instructions, all distances are to be in millimeters
and each "location" argument can be satisfied with either a precision point,
a transformat.ion, or a comI-Olmd transformation.

Note that the DELAY instruction (described in Section 5.8, Miscellaneous)
has an effect similar to a motion instruction because it is treated as a
"move to nowhere" instruction.

MOVE <location> [!]

Moves the robot to the location and orientation specified by the variable
<location>. Intermediate set J?Oints between the initial and final robot
locations are computed by interpolating between the initial and final
joint-variable values, resulting in a joint-interpolated motion. Any
changes in configuration requested by the user are executed during the
motion.

(

If the location name is
its value set, while
position and orientation
by the RETURN ke y.

followed by an exclamation point, <location> has
the instruction is being typed in, to the robot
at the instant the MOVE instruction is completed

MOVE #PICKI Moves by joint-interpolated motion to the location
described by the precision point PICK, which is
defined as the location of the robot when the
instruction is completed by a carriage return.

G ·:.C(o<:,.,j I :::.C rw
MOVET <location>,<hand opening>

Generates a joint-interpolated motion (see the MOVE instruction above) to
the location and orientation specified by the variable <location>.
During the motion, the hand opening is changed tg <hand opening> milli­
meters if a servo-controlled hand is used. Also, the pneumatic-control
system receives an "open" signal if <hand opening> is greater than zero;
otherwise it receives a "close" signal. A MOVET instruction can be

(

PROGRAM INSTRUCTIONS
Motion

Page 5-3

inserted into a program by pressing the RECORD button on the manual
control while in "T" Teach Mode (refer to Section 4.2, Program Editing).

MOVET PART 1, 0 Moves by joint-interpolated motion to the location
described by the transformation PART1, closing the
hand during the motion.

MOVES <location> [!]

Moves the robot to the location and orientation specified by t~e variable
<location>. The tool is moved along a straight-line path and is smoothly
rotated to
permitted
option.)

its final
during this

orientation. No changes in configuration
motion. (See MOVE for an explanation of the

are
"! "

MOVES PLACE Moves along a straight-line path to the location
described by the transformation PLACE.

MOVEST <location>,<hand opening>

Identical to the MOVET instruction, except that the tool is '!loved along a
straight line and is smoothly rotated to its final orientation. No
changes in configuratIon are permitted during this motion. A MOVEST in­
struction can be inserted into a program by pressing the RECORD button on
the manual control while in "TS" Teach Mode (refer to Section 4.2).

MOVEST PART7,100 ~oves along a straight-line path to the location
described by the transformation PART7, changing the
hand opening to 100mm during the motion.

DRAW [< dX >] , [< dY>] , [< dZ>]

a distance dX in the X
in the Z direction. (Any

The robot configurat.ion and
motion.

Moves the robot tool along a straight line,
direction, dY in the Y direction and dZ
omitted distances are assumed to be zero.)
tool orientation are maintained during this

DRAW 100.5,,-40 Moves the tool along a straight line 100.5mm in the
X direction and 40 mm in the negative Z direction.

ALIGN

Causes the tool to be rotated so that its Z axis is aligned parallel to
the nearest axis of the world coordinate system. This instruction is
primarily useful for lining up the tool before a series of locations are
taught. This is most easily done by using the monitor DO command (DO
ALIGN) •

Page 5-4

APPRO <location>[!], <distance>

PROGRAM INSTRUCTIONS
Motion

(

Moves the tool to the position and orientation defined by the variable
<location> and an offset along the tool Z axis of the distance given.
A positive distance sets the tool "back" (negative tool-Z) from the spec­
ified location, a negative distance offsets the tool "forward" (positive
tool-Z). (See MOVE for an explanation of the "!" option.)

APPRO PLACE, 75 Moves the tool, by joint-interpolated motion, to a
location 75 nun from that defined by the transforma­
tion PLACE, with the offset along the resultant
Z axis of the tool.

APPROS <location>[!], <distance>

Same as APPRO, but the tool is moved along a
smoothly rotated to its final orientation.
are permitted during this motion. (See MOVE
" !" option.)

straight-line path and is
No changes in configuration

for an explanation of the

APPROS PLACE,-50

DEPART <distance>

Moves the tool along a straight line to a location
50 nun from that defined by the transformation PLACE,
with the offset along the resultant Z axis of the
tool, and "beyond" the location PLACE.

(

Moves the tool (by joint-interpolated
the current Z axis of the tool.
"back;" a negative distance moves the

motion) the distance given along
A positive distance moves the tool

tool "forward."

DEPART 80

DEPARTS <distance>

Moves the tool 80 nun back from its current location.

Same as DEPART, but the tool is moved along a
smoothly rotated to its final orientation.
are permitted during this motion.

straight-line path and is
No changes in configuration

DEPARTS 200 Withdraws the tool 200 nun along a straight-line path
from its current location.

PROGRAM INSTRUCTIONS
Motion

DRIVE <jt>,<change>,<speed>

Page 5-5

Operates the single specified joint, changing its joint variable by
<change> \IDits'(degrees or mill::i:ffte~el?s). The joint number, < jt>, can be
1, 2, ••• , n, where n is the number of robot joints. (A proportional
haend is considered here as an additional joint.) The speed of the motion
is governed by a combination of the speed given in this instruction and
the monitor SPEED setting.

DRIVE 4,-62.4,75

READY

Changes the angle of joint 4 by driving the joint
62.4 degrees in the negative direction at a speed of
75% of the monitor speed.

instruction
and only the

to move the

Moves the robot to the READY location above the workspace, which forces
the robot into a standard configuration. Regardless of where the robot
is originally located, this instruction always succeeds.

This instruction is particularly useful with the DO command (DO READY) to
check for proper calibration of the robot.

CAUTION

Be careful that the robot does not strike anything while moving
to the READY location.

NEST

This instruction, which is only for the PUMA 250 robot system, moves the
robot into its nest.

CAUTION

To avoid possible damage to the robot, the NEST
should be used only after a READY instruction,
CALIBRATE and READY instructions should be used
robot out of the nest.

5.3 RAND CONTROL

The robot tool frequently has the form of some kind of grasping device,
referred to as a hand. Provision is made for pneumatically powered two··
state hands, and electrically driven proportional hands. For the latter,
the ~roportional-hand option must be installed in the robot controller, and
the ERAND switch ENABLE I d. The following instructions provide control of

Page 5-6 PROGRAM INSTRUCTIONS
Hand Control

(

the tool. If the tool is not a hand, these instructions will have to be
interpreted appropriately.

OPEN [<hand opening>] or CLOSE [<hand opening>]

These instructions cause the pneumatic control valves to receive a signal
to "open'" or "close," respectively, during the next motion.

Simultaneously, if the robot is equipped with a servo-controlled hand,
and the EHAND switch is ENABLE'd, the hand opening is changed to
<hand opening> millimeters. If the hand opening is omitted, or negative,
the hand is closed as far as poss~ble. If the hand opening is very
large, the hand is opened as far as possible.

Note that the OPEN and CLOSE instructions produce exactly the same effect
for proportional hands, and the hand-opening argument, if given, is
ignored for coptrol of the pneumatic control valves.

OPEN 75 During the next robot motion, instructs the pneu­
matic control valves to assume the "open" state; if
a servo-controlled hand is operational, changes the
hand opening to 75 rom.

(

OPENI [<hand opening>] or CLOSEI [<hand opening>]

These instructions have the same effects as OPEN and CLOSE except that
the operations are performed immediately instead of during the next robot
motion. A small time delay occurs to allow the hand to operate before
the program proceeds.

CLOSEI 50 Immediately instructs the pneumatic control valves
to assume the "close" state ~ if a servo-controlled
hand is operational, changes it's opening to 50 rom.

RELAX

Immediately turns off the open and
valves, causing the pneumatic hand to
no effect on systems using a four-way

close pneumatic control solenoid
become limp. (This instruction has
pneumatic control valve.)

GRASP <hand opening>, [<label>] '-IAN')

If a servo-controlled hand is installed and the ERAND switch is ENABLE'd,
this instruction causes the hand to close immediately, and then checks to
see if the final opening. is less than the specified amOlmt. If it is,
the program branches to the step specified by the program label. If the
optional program label is not specified, the program halts and an error
message is displayed. Thus, this instruction provides a simple one-step

PROGRAM INSTRUCTIONS
Hand Control

Page 5-7

method for grasping an object and testing to ensure that contact has been
achieved.

This instruction also causes the pneumatic control valves to irnm~diately

receive a "close" signal.

GRASP 12.7,120

5.4 INTEGER VARIABLE

Closes the servo-controlled hand and checks whether
the final opening is less than 12.7 rom. If it is,
have program execution continue at the step with the
label "120;" otherwise continue with the next step
in the program.

In most cases where an integer variable is indicated as an argument for a
user program instruction, either the symbolic name of an integer variable
can be given or an integer value can be specified. (The only time that an
integer value cannot be used in place of a integer var~able is when the
specified operation would result in an attempt to alter the value of the
constant; in which case an error message is generated.) Integer variable
names conform to the rules for location-variable names and program namE!S,
and their values must be between -32,768 and 32,767.

SETI <i.var> = <i.var 2> [<operation> <i.var 3>]

Sets the value of ~i.var> equal to the result of the expression on the
right-hand side of the equal sign •. The permitted operations (and the
symbols used to represent them) are addition (+), subtraction (-),
m,litiplication (*), integer division (/), and modulus determination (%).
If the operation and the third variable are missing, the instruction is a
direct assignment statement.

SETI .N=N+1

SETI M=N%2

TYPEI <i.var>

Redefines the value of the integer variable N to
be one larger than its current value.

Sets the integer variable M equal to the remainder
resulting from the operation N/2.

Displays the name and value of the specified integer variable. No output

is done, however, if the MESSAGES switch is DISABLE'd.

TYPE COUNTER Displays the current value of the integer variable
COUNTER on the system terminal.

Page 5-8

5.5 LOCATION ASSIGNMENTA.ND MODIFICATION

PROGRAM INSTRUCTIONS

(

These instructions define and modify the destinations of robot motion
instructions during program execution.

It is especially important to understand these very powerful instructions
because they provide significant flexibility in VAL programs. For example,
by accepting external input signals and then altering the base or tool set­
'tings, or defining or modifying the val uesof location variables, a user
program can adapt to the robot working environment.

HERE <location>

Sets the val ue of a transformation or prec~s~on point equal to the cur­
rent robot location. (This instruction is equivalent to the monitor HERE
command.)

Only the right-~ost transformation of
defirted. An error message results if any
a compound transformation are not already

a compound transformation is
of the other transformations in
defined.

HERE PART Sets the transformation PART equal to the current
robot location.

HERE #PART Assigns the current location of the robot to the
precision point PART.

VI N I/./V 01,.,;/,..) k NO "VIv'

~ i
SET <transformation> = <transformation 2>[: <trans 3>] ••• [:<trans n>J

or SET <precision point> = <precision point>

Sets the value of the location variable on the left equal to that on the
right of the equal sign. If the right-hand side is not defined, an error
message is generated.

SET PICK=START Sets the val ue of the transformation PICK equal to

that of the transformation START.
SET #PLACE=#POST Sets the val ue of the precision point PLACE equal to

that of the precision point POST.

SHIFT <transformation> BY [<dx>], [<dy>], [<dz>]

Modifies the X, Y, and Z components of the indicated transformation
by adding distance changes <dx>, <dy>, and <dz>, respectively. If the
value of the transformation has not yet been defined, or its new X, Y, Z
location is too large to represent, an error message is generated.

(

SHIF~ PICK BY 100.8,-35.1 Redefines transformation PICK
100.8rom in the X direction
the negative Y direction.

l

to be shifted
and 35.1 rom in

,
I',

PROGRAM INSTRUCTIONS
Location Assignment and Modification

Page 5-9

TOOL [<transformation>]

Sets the value of
<transformation>.
the effect of this

the tool
Refer to the
instruction.

tra.nsformation equal to the val ue of
monitor TOOL command for a description of

TOOL POINTER Replaces the, current tool transformation assignment
with the value of transformation POINTER.

I.INIr/Vow/0'

INVERSE <trans~ormation>
/<;).)..:>.",AJ

'fI
<transformation 2> [: (trans 3>] (: <trans n>]

Sets the. value of <transformation> equal
transformation on the right. That is, if
represents a location, A, relative to
the inverse transformation represents the

If the right-hand side. is not defined, an

Similar to the SET instruction.
to the matrix inverse of the
the transfo:rmation on the right
another location, B, then
location B relative to A.
error message is generated.

INVERSE TRAmS. INV='TRANS Defines the transformation
equal to the inverse of
TRANS.

TR~NS.INV to be
tht" transformation

FRAME <transformation> = <trans 2>,<trans 3>,<trans 4>

Assigns a val ue to <transformation) which describes the relationship of a
secondary reference frame to that o·f the robot. The secondar y reference
frame is assumed to have (1) its origin at the point defined by
<trans 2>, (2) its positive X axis passing through th,e point defined by
<trans 3>, and (3) its X-Y plane containing the IX>int defined by
<trans 4>. This instruction is usually used to define a "base" txansfor­
mation for relative locations.

To improve accuracy, the points should be as far apart as practical, and
the location defined by <trans 4> should be near the Y axis, and as far
as practical from the X axis.

FRAME BASE=A1,~2,A3 Defi.nes the value of tranformation BASE to be a
description of the reference frame which has its
origin at the point described by transformation
A1, with the positive X axis pasl'.;ing from A1
through the point given by A2, and A3 defining
another point which lies in the X-Y plane.

Page 5'-10

5.6 PROGRAM CONTROL

PROGRAM INSTRUCTIONS

(

~rhe following instructions al ter. the sequence in which user program instruc­
t.ions are executed, cmd interloc'k the VAL system with other devices.

In this section, "<channel>" designates one of the external signal input OJ;'

output lines, and can be either an integer number or an integer variable.
The absolute val ue of <channel> spec.ifies a particular signal line. The
magnitude of <channel> must be bet\,\'een 1 and n, where n is the number
of hardware bidirectional interlocks provided with the system. For certain
iristructions, the sign of <channel> specifies high or low signal values. A
positive value indicates a high signal and a negative value indicates a low
signal.

C.,QTO <label>

Performs an unconditional branch to the program step identified by the
given label.

GaTO 95

GOSUl3 <program>

Causes program execution to continue at the step
wi.th the label "95,."

(

Execution of the current program is 'temporarily suspend,ed, and execution
continue s at the first;. step of the indicated user progl,:,am, which is then
considered a subroutine. Execution automaticall y returns to the current
program when a RETURN instruction is executed in the subroutine. Up to
ten programs can be superseded at any given time.

GOSUB PALLET

RETURN [<skip count> J

Branches to
instruction
program.

the program named PALLET. When a RETURN
is executed, control returns to this

Terminates execution of the current subroutine and resumes execut'ion of
the last-suspended program at <skip count> + 1 steps (noi: co unting
REMARK instructions) following th.e instruction which caused the su.brou­
t1ne to be invoked. If the. skip count is omitted, or a count: less than
zero is spec ified, a val ue of zero is used. A RETURN in a maIn prog'ram
has the same effect as a STOP instruction.

If the subroutine started execution due to the triggering of: a REAC'I'.I
instruction (see below), a skip count of one can be used to rf;~sume execu~

tion of the interrupted routine without executing the inter:r:-upted program
step again.

,
'.

PROGRAM INSTRUCTIONS
Program Control

RETURN 2

Page 5-11

Returns to the previously suspended program, at the
third (2+1) step following the instruction which
invoked subroutine execution.

IF <i.var> <relationship> <i.var 2> THEN <label>

Compares the value of <i.var> to the value of <i.var 2>~ if the stated
relationship is true, program execution branches to the program step
identified by the given label. otherwise, the next step of the program
is executed as usual. The possible relationships that can be specified
are EQ (equal), NE (not equal), LT (less than), JJ!",-. (greater than),
LE.., (less than o~e,.rual), and ~(greater than or equal). Note that
eit:her var iable can be replaced. by an integer val ue.

IF N GT 3 THEN 25

PAUSE [<string>]

If the current value of the integer variable N is
greater than 3, continue program execution at the
step with the label "25," otherwise continue with
the next step.

Terminates execution of the user program, and displays the message
<string>. Execution can be continued from thi s point by typing PROCEED.

PAUSE POSITION THE PART

STOP [<string>]

Stops program execution and displays "POSITION
THE PART" on the system terminal. The operator
can have program execut ion continue by typing
PROCEED.

Terminates execution of the user program unless mort,~ program loops (see
the EXECUTE command) are to be completed, in which case execution of the
program continues at its first step. If provided, the message <string>
is displayed on the terminal. The STOP instruction is used to mark the
end of a program execution pass. Note that the HALT instruction has a
different effect.

STOP END OF TEST

HALT [<string»

Terminates a program execution l.oop and displays
"END OF TEST."

Terminates execution of the user program regardless of any program loops
(see' the EXECUTE command) remaining to be completed, and displays the
optional message' <string> on the terminal. After terminat::i.on by a HALT
instruction, program execution cannot be resumed wi tll a PROCEED command.

Page 5-12

HALT END OF PROGRAM

PROGRAM INSTRUCTIONS
Program Con.trol

Stops program execution and displays "EJ.'m OF
PROGRAM. "

(

("/?/I f(..1 NG
C" 6"I/VI A S'

IFSIG 2,-3" THEN 15

t

IFSIG <channel>, [<channel>], [<channel>] , [<channel>] THEN <label>

If the state(s) of the indicated external input signal (s) exactly match
the state(s) specified, the program branches to the instruction ident­
ified by the given label. That is, if any mismatch is detected, the next
program step is executed. Channels are specified as signed values to in­
dicate whether the tests are to be made for high or low signals. Omitted
channel numbers or channel numbers with a value of zero always satisfy
the matching test.

If external input signal line #2 is high and
line #3 is low, continues program execution at
the step with the label "15," otherwise execu­
tion continues with the next step. Note that
the commas after the "3" are required to cor-
rectly complete the rest of the instruction.

?C/1;v ~'3~ vrtf'?/It-:5c..<.<:

SIGNAL <channel>, [<channel>, ••• ,<channel>J

Turns the signal(s) on or off at the specified output channel(s). Posi­
tive channel numbers turn the corresponding signals on, negative numbers
turn the signals off.

(

SIGNAL -1,4 Turns off the signal at output channel #1, and turns
on the signal at output channel #4.

REACT <channel>, [<program>] [ALWAYS]

Initiates continuous monitoring of the external signal at the specified
input channel. If a high value is detected, the program "reacts" by
altering the sequence in which the following program steps are executed.
The reaction is equivalent to performing a "GOSUB <program>" after com­
pletion of the program step during which the high signal first occurs.
If ALWAYS is specified, the signal monitoring is active until an IGNORE
instruction (see below) is executed, or until the reaction is triggered
(in which case the equivalent of an "IGNORE <channel> ALWAYS" ·is automat­
ically performed). If ALWAYS is omitted, the signal is only checked
until completion of the next motion instruction. If no program is refer­
enced, the program step following that during which the first high value
occurs is skipped and execution continues at the next program step. Only
one REACT or REACTI command can be associated with any channel at any
given time.

REACT 3, DELAY Monitors external input signal #3;
next motion instruction it becomes
subroutine DELAY after the motion.

if during the
high, branch to

PROGRAM INSTRUCTIONS
Program Control

REACTI <channel>, [<program>] [ALWAYS]

Page 5-13

Like REACT, this instruction initiates the continuous monitoring of the
external signal at the specified input channel. However, in this case
when a high value is detected, the current instruction is immediately
aborted and the equivalent of a "GOSUB <program>" is executed. The
subroutine call to <program> is performed such that if a "RETURN 0" is
encountered, the interrupted program step is executed once again. To re­
turn control to the interrupted program and skip further execution of the
interrupted step, a "RETURN 1" must be used to exit ,from <program>. If
no program is referenced, the current program step is immediately aborted
and the following step is executed when a high signal on the channel is
detected. The optional argument ALWAYS and the IGNORE instruction have
exactly the same effect on REACTI as they do on the REACT instruction.
Only one REACT or REACTI command can be associated with any channel at
any given time.

REACTI 1, ALARM ALWAYS

IGNORE <chctnnel> [ALWAYS]

Monitors external input signal #1; if it ever
becomes high, immediately branch to subroutine
ALARl"I.

Disables the REACT or REACTI ins:truction associated with the specified
external-signal input channel. If ALWAYS is specified, the reaction is
permanently disabled; otherwise it is disabled only until completion of
the next motion instruction. The value <channel> must always be greater
than zero.

IGNORE 5 ALWAYS

WAIT <channel>

Stops monitorinJ of external' input signal #5.

Puts the program into a "wait loop" until the desired sense of the exter­
nal signal at the specified input cha'nnel is detected. Positive and
negative channel numbers indicate waiting ~hould be done until the exter­
nal signal goes ,true (high) or false (low)" respectively. A signal wait
loop can be aborted by using the monitor PROl;EED command.

\<lAIT -4 Stops program execution ~ntil external input signal
#4 becomes low.

Page 5-14

5. 7 TRAJECTORY CONTROL

PROGRN~ INSTRUCTIONS

The following instructions are used for enabling and disabling special fea­
tures of the hardware position servo and the software trajectory generator.
As indicated below, these instructions can include the word ALWAYS if it is
desired tha"t the requested option affect all successive motions. Whenever
an instruction does not include ALWAYS, it is assumed that it is only to
affect the next motion. Note that a DELAY instruction cancels the effects
of these instructions when ALWAYS is not specified.

Since these instructions have the effect of turning features on and off,
those features are sometimes called " switches." They should not be confused
with the swit:ches described in Section 4.7, System Switches.

SPEED <val ue> [ALWAYS]

Requests that robot motion be performed at the specified speed
("normal" == 100),. which can range from 0.01 (extremely slow) to 327.67
(extremely fast). (If no SPEED instruction is executed, a speed of 100
is applied.)

The speed at which motions are performed is determined by combining the
value specified in this instruction and the monitor SPEED setting. Note
that motion speed has different meanings for joint-interpolated motions
and straight-line motions, as explained in Section 3.6, Trajectory
Control.

("

SPEED 60 ALWAYS

COARSE [ALWAYS]

Sets the program motion speed to 60 until changed by
another SPEED command •

Enables a low-tolerance feature in the hardware servo so that larger
errors in the final position of the robot joints are permitted at the
ends of motions_ This results in faster motion execution when high
accuracy is not required.

COARSE ALWAYS

FINE [ALWAYS]

Enables the low-tolerance feature until explicitly
disabled.

Opposite of the COARSE instruction, this is the default state of the
hardware servo system.

PROGRF..M INSTRUCTIONS
Trajectory Control

NONULL [ALWAYS]

Page 5-15

When NONULL is in effect, commanded motio:ns are terminated without ,wait··
ing for the electronics to signal that all moving joints have reached
their specified positions. Like the COARSE command, this mode allows
faster motion if high final position accuracy is not required. However,
since no position-error checking is done, motion execution times are
fixed and final pOsition errors can be quite large.

NULL [ALWAYS]

Opposite of 'the NONULL instructipn, this is the default ,state of the
soft~,are control system.

INTOFF [ALWAYS]

Turns off the hardware position-error-integration feature dtt,ring
controlled robot motions. However, hardware integration ,is
enabled during the final position-error nulling period.

INTON [ALWAYS]

path­
always

Opposite of the
position error
default state of

5.8 MISCELLANEOUS

INTOFF instruction. Causes
throughout path-controlled
the software control system.

the hardw'are to
robot motiDns.

integrate
This is the

The following instructions make a variety of capabilities avau.able to the
programmer.

BASE [<dX>] , [<dY>] , [<dZ» ,[<Z rotation»

Redefines the reference frame of the robot in the same way as:he monitor
BASE command.

BASE 100,,-50 Redefines the world reference frame to t~ectively

shift all locations 100 mm in the negative X direc­
tion and 50 nun in the positive Z direct'n from
their current location. Note that the argur"lts for
this instruction describe movement of tt I robot
reference frame relative to its present l""tion,
and thus have an opposite effect o;n location.;; -ela­
tive to the robot.

Page 5-16

DELA Y <time>

!'i'
PROGRAM INSTRUCTIONS

Miscellaneous

(

Puts the progr~n into an
duration can be given
interpreted in seconds.

idle loop for the 'specified period of time. The
as any value! betwe"en 0.01 and 327.67 and is

c..

It should be noted that DELAY is interpretE'!d as a "move-to-nowhere"
motion ins"truction. In particular, (1) if there is a pending hand opera­
tion, the hand motion ta.kes place during the execution of the DEL~Y in­
struction; (2) if any temporary trajectorysw'itches have been specified,
they are cleared after t:he conclusion of the" DBLA Y; and (3) if there is
a pending configuration change, it is canceled.

These instructions have the same effects on the system switches as the
corresponding monitor commands.

DELAY 2.5

ENABLE <switch>

ENABLE MESSAGES

REMARK [<string>]

or

Causes all robot activ'ity to stop for 2.5 seconds,
any pending hand Qperation occurs, clears any
temporarytraj ectory E;witches that may be set, and
cancels any pending configuration change requests.

DISABLE <switch>

Turns on the MESSAGES s:witch.
(

Provides a "comment" line in a program. Thai': is, REMARK instructions are
used only for the programmer's benefit, and ilre ignored when a program is
executed.

REMARK COUN'r LOOPS Incl udes a reminder to the programmer in the program.

TYPE [<str ing> J

Displays the message <string> on the terminal; a blank line is output if
no string is provided. If the MESSAGES swit,ch is DISABLE'd no output is
done.

'rYPE P:t,:ogram MOTOR Display the message "Pr,ogram MOTOR" on the system
terminal to direct the ojperator.

(
\

CHAPTER 6

SAMPLE PROGRAMS

The examples in this chapter are intended to demonstrate the use of various
VAL instructions. The tasks used i.n the examples have been chosen because
they are representative of common types encountered.

6. 1 PROGRAM INITIALIZATION

It is often useful to begin a program with an initialization sequence to
make sure certain conditions are, as reqUired for proper execution of the
program. The following example establishes the configuration the robot is
to assume, and make s sure the hand is open.

Since one never knows when it might become desirabl.e to have a prograIl'. in­
voked as a subroutine by another program, it is good practice to terminate a
program with a RETURN instruction unless a STOP or HALT is required for
some reason.

REMARK
REMARK
REMARK
RIGHTY
ABOVE
NOFLIP
REMARK
OPENI
REMARK

REMARK
REMARK
REMARK
REMARK
RETURN
REMARK
REMARK

START OF PROGRAM TO •••

ASSURE THE PROPER ROBOT CONFIGURATION

ASSURE CORRECT INITIAL HAND OPENING
100. 00

START OF TASK INSTRUCTIONS

i

END OF TASK INSTRUCTIONS I
END WITH "RETURN" SO THIS ROUTINE CAN BE USED AS A

SUBROUTINE LATER IF DESIRED
o

END OF PROGRAM --

Page 6-2

6.2 PALLETIZING

SAMPLE PROGRAMS
Program Initialization

This example demonstrates the use of the SE'TI, IF, SET, and SHIFT instruc­
tions. The task to be accomplished is to pick objects from a tray (pallet)
with six rows (50 rom apart) and 12 columns (30 nun apart) of bins. The
instructions shown here only define the locations of successive objects.
Other instructions would be inclUded in the indicated space to perform the
desired operations on the objects.

The plane of the pallet is assumed to be parallel to the X, Y plane of the
robot world coordinate system. The rows are assumed to have a direction 30°
from the normal X axis, as indicated by the BASE instruction below. If
these assumptions are not correct, the arguments in the SHIFT instructions
would have to be changed to represent the correct X, Y, Z displacements
between pallet positions.

A "main" program that will administer this task follows.

REMARK
REMARK
REMARK
REMARK
REMARK
BASE
REMARK
SETI
SETI

10 REMARK
SETI
REMARK
SETI
REMARK
SET

20 REMARK
REMARK

REMARK
GOSUB
REMARK
GOTO
REMARK
REMARK
REMARK
RETURN
REMARK

PROGRAM TO PICK OBJECTS FROM A PALLET

INITIALIZE VARIABLES FOR THE PALLET SUBROUTINE

SET THE REFERENCE FRAME AXES PARALLEL TO PALLET
0.00, 0.00, 0.00, 30.00
SET VALUES OF MAXIMUM ROW AND COLUMN COUNTS
MAX. ROW = 6
MAX. COL = 12
SET ROW COUNTER TO FIRST ROW
ROW == 1
SET COLUMN COUNTER TO FIRST COLUMN
COLUMN = 1
SET OBJECT LOCA'l'ION '1'0 TAUGHT LOCATION IN THE PALLET
PICK == CORNER
INSTRUCTIONS DESCRIBING MOTIONS TO AND FROM LOCATION

"PICK" AND ACTIONS TO BE PERFORMED TO THE OBJECT

REDEFINE "PICK" TO BE NEXT PALLET LOCATION
PALLET
GO BACK AND PROCESS NEW PALLET LOCATION
20
GET HERE WHEN WHOLE PALLET HAS BEEN PROCESSED

BECAUSE OF "RETURN 1" IN SUBROUTINE
RETURN TO CALLING PROGRAM OR MONITOR
a
-- END OF PROGRAM

SAt.IJ.PLE PROGRAMS
Palletizing

Page 6-3

The subroutine PALLET will define the successive values for location

variable PICK.

REMARK
REMARK
REMARK
REMARK
REMARK
SETI
REMARK
IF
REMARK
SHIFT
REMARK

RETURN
REMARK

10 REMARK
SETI
REMARK
IF
REMARK
SHIFT
REMARK
SETI
REMARK
RETURN
REMARK

20 REMARK
REMARK
RETURN
REMARK

SUBROUT INE PALLET

PURPOSE: CALCULATE PALLET LOCATIONS

INCREMENT COLUMN COUNTER
COLUMN = COLUMN + 1
TEST FOR END OF ROW
COLUMN GT MAX. COL THEN 10
SHIF'.r ALONG ROW
PICK BY 30.00, O~OO, 0.00
RETURN TO MAIN PROGRAM AND PROCESS NEXT OBJECT

o

ROW COMPLETED, INCREMENT ROW COUNTER
ROW = ROW + 1
TEST FOR ALL ROWS DONE
ROW Gl' MAX.ROW THEN 20
SHIFT BACK TO START OF ROW, AI~D DOWN TO NEXT ROW
PICK BY -330.00, 50.00, 0.00
RESET COLUMN COUNTER
COLUMN = 1
RETURN TO MAIN PROGRAM AND PROCESS NEXT OBJECT
o

ALL PAI,LET roSITIONS HAVE BEEN USED, RETURN TO MAIN
PROGRAM AND SKIP THE "GOTO" INSTRUCTION

END OF SUBROUTINE PALLET --

Before these routines can be used, location CORNER must be ,j.efined, as well
as any locations referenced by the omitted instructions. Location PICK is
redefined to correspond the each pallet location during execution. If the
pallet is later moved, only location CORNER need be redefineo'--all the other
pallet locations are calculated by PALLET.

6.3 COMMUNICATING WITH EXTERNAL SIGNA'P LINES

This sample program performs the following task: (1) the robot waits for a
part to be in place in a feeder~ (2) after picking up the ~~Lt:, the robot
carries it to an inspection station, and signals the station that a part is
in place; (3) the station determines whether the part is type "A" or "B"
and sets the states of signal lines accordingly; (4) based on, the output of
the inspection station, the robot is directed by one of three subroutines to
process the part~ (5) the cycle repeats indefinitely.

Page 6-4 SAMPLE PROGRAMS

External Signal Lines

The program will immediately branch to subroutine EMERGENCY if an emergency
condition is indicated by input signal line #7 at any time from the start of

the program \ID til the IGNORE instruction.

REMARK
REMARK
REMARK
SIGNAL

REMARK
OPENI
REMARK

10 REMARK
REMARK
REMARK

REACTI
REMARK
WAIT

REMARK
SPEE:D

APP1=l.O
MOVES

·CLOSEI

DEPARTS

REMARK
APPHO

MOVES
REMARK
IGNORE
REMARK
SIGNAL
REMARK
WAIT

REMARK
DEPART
REMARK
SIGNAL

REMARK
IFSIG
REMARK
IFSIG
REMARK

GOSUB
GOTO

20 REMARK
GOSUl3
GOTO

30 REMARK
GOSUB

40 REMARK
GOTO
REMARK

START OF PROGRAM

INITIALIZE SIGNAL 1,INE
-2
MAKE SURE HAND IS INITIALLY OPEN
100.00

START OF LOOP TO PROCE:SS PARTS

START LOOKING AT "EMERGENCY" SIGNAL ON INPUT CHANNEL 7
7, EMERGENCY ALWAYS
WAIT FOR "PART IN PLACE" SIGNAL ON INPUT CHANNEL 1
1
PICK UP PART FROM FEEDER
200.00
PART, 50. 00
PART
0.00
50.00
MOVE TO INSPECTION STATION
TEST, 75.00

TEST
STOP CHECKING FOR EMERGENCY CONOITION
7 ALWAYS
SIGNAL THAT PART IS IN PLACE
2

WAIT FOR" INSPECTION DONE" SIGNAL \'IN INPUT CHANNEL 6
6

WITHDRAW FROM INSPECTION STATION
100.00
RESET "PART IN PLACE" SIGNAL
-2
TEST RESULTS OF INSPECTION; FIRST FOR PART" A"
-3,4,-5, THEN 20
THEN FOR PART "B"
3,-4,-5, THEN 30
PART IS NEITHER "A" OR "B" -- PROCESS REJECT
REJECT
40
PROCESS PART "A"
PART. A
40
PROCESS PART IfB"

PART. B

PART PROCESSING COMPLETED, GET ANOTHER PART
10
-- END OF PROGRAM --

(

(

SAMPLE PROGRAMS
External Signal Lines

Page 6-5

The inspection station is assumed to perform tests that identify the part.
The results are reported to the robot by the status of input signal lines 3,
4 and 5.

6.4 USE OF TOOL TRANSFORMATIONS

Suppose that in the last example the parts are the have a hole drilled in
them, and it is to be in different places on the two parts. Thus, the part
processing involves holding the parts under a drill in the proper position
and orientation.

One way to program this task would be to have Doth subroutines PART.A and
PART.B contain identical motion sequences, with the only difference being
the locations involved. 'l;'his approach will work, but it It1lay be undesirable
because of the duplication of instructions required. 1\1 so , this approach
will get very complicated if several other work stations are involved.

Another way to program the task is to use the same instructiQn sequence for
both parts, and use tool transformations to compensate for the differences
between the part.s. The instructions to do this might be ,as follows (omitted
instructions are the same as in the preceding section).

REMARK
INVERSE
INVERSE

10 REMARK
REMARK
REMARK
TOOL

CALCULATE THE TOOL TRANSFORMATIONS
PART.A = INV.A
PART.B = INV.B
START OF LOOP TO PROCESS PARTS

SET THE TOOL TRANSFORMATION FOR THE NULL '.POOL

20 REMARK PROCESS PART "A"
TOOL PART. A
GOTO 40

REMARK
30 REMARK PROCESS PART "B"

TOOL PART. B
REMARK

4,0 REMARK PROCESS THE PARTS
APPRO DRILL, 100.00
MOVES DRILL
REMARK SIGNAL THAT PART IS UNDER DRILL
SIGNAL 3

REMARK WAIT FOR "DRILL DONE" SIGNAL
WAIT 6
REMARK WITHDRAW FROM THE DRILL AND DROP OFF PART

Page 6-6

WAIT
REMARK
DEPART
MOVE
OPEN
DEPART
REMARK
GO'ro
REMARK

SAMPLE PROGRAMS

Use of Tool Transformations

6
WITHDRAW FROM THE DRILL AND DROP OFF PART
100.00
RELEASE
100.00
80. 00
GET ANOTHER PART
10
-- END OF PROGRAM

(

Note that both types of part will be moved through the same sequence. The
following sequence should be used to define the necessary transforma·tions:

1. Move the empty hand to a location that is fixed relative to the
drill. (This location should be well defined so the hand can be
returned to it exactly if the drill should later be moved.)

2. TyPI~ "HERE DRILL" to define location DRILL.
3. Put a type-A part in the hand and position it under the dJ;"ill.
4. Type "HERE DRILL: INV.A" to define the transformation INV. A •
5. Put a type-B part in the hand and position it under the drill.
6. Type "HERE DRILL: INV.B" to define the transformation INV.B.
7. Movl~ to the drop-off location and type "HERE RELEASE".

Note that the transformations INV. A and INV. B are the inverses of the tool
transformations used in the program. The INVERSE instructions in the pro­
gram calculate the tool transformations from these transformations.

Once the transformations PART.A and PART.B are defined, the relationships
between the robot and the two hole locations are established. This could be
especially useful if the parts are to be processed at several machining
·stations. To teach the locations corresponding to other stations I the
following sequence could be used:

1.

2.
3.
4.
5.

Type "TOOL PART. A"
Put a type-A part in
Position the part at
Type "HERE <station
Repeat steps 3 and 4

to set the tool transformation for part
the hand.
the desired work station.
name> " to record the location.
for other the stations.

A •

This not only teaches the locations for processing type-A parts,
automatically includes type-B parts. This is because when type-B
processed, the tool transformation PART.B correctly represents the
ship between the hand and the hole in those parts.

but also
parts are
relation-

APPENDIX A

COMPOUND TRANSFORMATIONS

Compound transformations provide a means of specifying tool locations and
orientations relative to the locations and orientations represented by other
transformations. This is a very useful facility in situations when several
obj ect locations have to be taught relative to a reference location. If the

,reference is moved, only the transf.ormation specifying the reference need be
updated. Then, all locations del':ined relative to the ref"erence are auto­
matically corrected for the change o:{the reference the next time they are
used.

For example, if PLATE is the name of the transformation specifying the
location of a base plate relative to th'e reference frame of the robot, and
OBJECT is the relative transformation for the location of an object relative
to the location of the plate, the corn.~und transformation PLATE:OBJECT
defines the location of the object relative to the reference frame of the
robot.

It is possible to string together any number of' relative transformations in
this way. Hence, in the above example, if the object were to be grasped at
a particular point, GRASP, which is defined rela'tive to the location of
OBJECT r a program instx;uction to move the robot tool to the grasp location
could be written as follows:

MOVE PLATE:OBJECT:GRASP

It should be noted that the order,
specified is generally crucial.
defined relative to transformation
and B:A does not.

in which relative ~ransformations are
For example, if transformation B is
~ , then A:B yields the desired result

It should also be noted that the use of compJund transforIi1ations introduces
positioning errors because of the cumulative computational errors involved;
thus they should be used sparingly.

A.1 DEFINING RELATIVE TRANSFORMATIONS

In VAL, a number of methods are available for d~fining the values of rela­
tive transformations. It is normally most convenient to define relative
transformations starting with the reference transformat:ion and working out
to the last relative transformation. It is possible to define each of the
relative transformations using the POINT command, expli.citl y typing in the
value of each of the transformation coordinates. However, it is normally

Page A-2 COMPOUND TRANSFORMATIONS
Defining Relative Transformations

much easier to teach each of the relative transformations using the HERE
command.

Again, turning to the example, each of the relative transformations
defined in the manner which follows. First, the location of the
defined, and then one works outward to the grasp location. If the
the robot is positioned at PLA.TE,

HEHE PLATE

can be
PLATE is
tool of

defines the location and orientation of the PLATE transformation. Next, if
the tool is positioned at the locat:ion of OBJECT,

HERE Jl?LATE:OBJECT

sets the value of the relative transformation OBJECT equal to the location
and orientation of the tool r'elative to the location of PLATE. In this
case, if PLATE was undefined, the value of OBJECT could not be determined
and an error message would be gene~rated. Finally, the tool must be moved to
the grasp point, and the followingr command issued:

HERE PLATE:OBJECT:GRASP

This last command sets the val ue o:f GRASP equal to th(~ location of the tool
relative to the location of OBJEC'r in the reference frame of the robot. As
an alternative to this last command, one could al so define the val ue of
GRASP while entering a program by 1:'yping the instruction:

MOVE PLATE: OBJECT: GRASP 1

assuming that the values of PLATE and OBJECT were already defined.

A.2 COMPUTATIONAL CONSIDERATIONS

In situations where the same compound transformation is to be used several
t.imes, i tis computationally advantageous to make use of a SET instruction.
For example, to approach GRASP and then move to the final location, instead
of using

APPRO PLATE: OBJECT: GRASP, 100.0
MOVE PLATE: OBJECT: GRASP

one could use

SET X = PLATE:OBJECT:GRASP
APPRO X, 100.0
MOVE X

(

(

COMPOUND TRANSFORMATIONS
Computational Considerations

Page A-3

While these two programs are functionally equivalent, the second version
would take less time to execute since thecomp::nmd transformation has to be
evaluated only once.

A.3 EXAMPLE

This example will be another method of programming the palletizing task in
Chapter 6. In this case the pallet will be considered a reference frame,
with the pallet locations defined relative to that frame.

The first part of the program leads the user through the
fine the pallet reference frame. These steps only have
each time the pallet is relocated relative to the robot.
would normally be stored as a separate program.

The "main" program for the task becomes:

steps needed to de­
to be executed once
Thus, these steps

REMARK
REMARK
REMARK
RE1:1ARK
TYPE
PAUSE
REMARK
HERE
TYPE
'!lYPE
PAUSE
REMARK
HERE
TYPE
TYPE
PAUSE
REMARK
HERE
REMARK
FRAME
REMARK
INVERSE
SET
REMARK
REMARK
REMARK
REMARK
REMARK
SETI
SETI

10 REMARK
SE'l'I

PROGR~M TO PICK OBcTECTS FROM A PALLET

-- PROCEDURE TO CALCULATE THE PALLET REFERENCE FRAME --

POSITION THE HOBor AT THE PALLET "ORIGIN"
TYPE II PROCEED<HETURN> " WHEN READY
RECORD THIS LOCATION
ORIGIN
POSITION THE ROBOT AT THE FURTHEST PALLET LOCATION

ALONG THE PALLET +X DIRECTION
TYPE "PROCEED<RETUI·__~N>" WHEN READY
RECORD THIS LOCATI01~

X

POSITION THE ROBOT AT' THE FURTHEST PALLET LOCATION
ALONG THE PALLET +Y DIRECTION

TYPE "PROCEED<RETURN>" WHEN READY
RECORD THIS LOCATION
Y

CALCUL~TE THE PALLET REFERENCE FRAME
PALLET = ORIGIN, X, Y
CALCULATE TRANSFORMATION FOR STARTING LOCATION IN PALLET
TEMP '= PALLET
START = TEMP:ORIGIN

-- END OF PROCEDURE TO CALCU'LATE REFERENCE FRA~1E

INITIALIZE VARIABLES FOR THE PALLET SUBROUTINE:
(1) SET VALUES OF MAXIMUM ROW AND COLUMN COUNTS
M~X.ROW = 6
MAX. COL = 12

(2) SET ROW COUNTER TO FIRST ROvv
ROW = 1

Page A-4

REMARK
SE'!'I
REMARK
SET'
REM. ARK
SET

20 REMARK
REMARK

REMARK
GOSUB
REMARK
GOTO
REMARK
REMARK
REMARK
GOTO
REMARK

COMPOUND TRANSFOR~ATIONS

Example

(3) SET COLUMN COUNTER TOE'IRST COLUMN
COLUMN "",
(4) SET OBJECT LOCATION TO FIRST LOCATION IN THE PALLET

HOLE = STl-\RT
DEFINE LOCATION OF OBJECT IN ROBOT REFERENCE FRAME
PICK "" PALJ.JET: HOLE
INSTRUCTIONS DESCRIBING MOTIONS TO AND FROM LOCATION

"PICK"AND ACTIONS TO BE PERFORMED TO THE OBJECT

REDEFINE "PICK" TO BE NEXT PALLET LOCATION
PALLET
GO BACK AND PROCESS NEW PALLET LOCATION
20
GET HERE WHEN WHOLE PALLET HAS BEEN PROCESSED

BECAUSE OF "RETURN ," IN SUBROUTINE
RETURN TO TOP OF LOOP FOR NEW PALLET
10
-- END OF PROGRAM --

(

-The subroutinle PALLET will define the successive val ues for location vari­
able PICK. It: does this by shifting location HOLE ar'ound the pallet and de­
fining PICK as the location defined by HOLE relative to PALLET.

(

REMARK
REMARK
REMARK
REMARK
REMARK
SETI
REMARK
IF
REMARK
SHIFT
GOTO

10 REMl-\RK
SETI
REMARK
IF
REMARK
SHIFT
REMARK
SETI
REMARK

20 REMARK
SET
RETURN
REMARK

SUBROU'rINE PALLET

PURPOSE: CALCULATE PALLET LOCATIONS USn~G COMPOUND TRANS.

INCREMENT COLUMN COUNTER
COLUMN = COLUMN + ,
TEST FOR END OF ROW
COLUMN GT MAX. COL THEN 10
SHIFT ALONG ROW
HOLE BY 30.00, 0.00, 0.00
20
ROW COMPLETED, INCREMENT ROW COUNTER
RO,v = ROW + 1
TEST FOR ALL ROWS DONE
ROW G'T MAX. ROW THEN 3D

SHIFT BACK TO START OF ROW, AND DOWN TO NEXT ROW
HOLE BY -330.00,50.00,0.00
RESET COLUMN COUNTER
COT.JUMN = 1

RETURN TO MAIN PROGRAM AND PROCESS NEXT OBJECT
SET THE VALUE OF PICK
PICK = PALLET:HOLE
o

(,

COMPOUND TRANSFORMATIONS
Example

Page A-5

30 REMARK
REMARK

RETURN
REMARK

ALL PALLET LOCATIONS HAVE BEEN USED, RETTffiN TO MAIN
PROGRAM AND SKIP THE "GOTO" INSTRUCTION

END OF SUBROUTINE PALLET --

AS in the program in Chapter 6, the location variable HOLE is shifted around
to each pallet l.ocation during execution. ':!;'he difference here is that
HOLE only defines a location relative to the pallet and is combined with
PALLE~[, to define PICK, the location relative to the robot.

There are two advantages to using compound transformations for this task:
the I~llet can have any orientation relative to the robot, and it is easier
to compensate for a relocation of the pallet. If the pallet is later moved,
the instructions which define the PALLET reference frame must be executed,
but no changes need to be made to the program. In the earlier example,
however, it might be necessary to modify the BASE and SHIFT instructions to
compensate for a repositioning of the pallet.

(

(

(

APPENDIX B

DEFINING A TOOL TRANSFORMATION

If the dimensions of a tool are known, the POINT command can be used to
define the corresponding tool transformation. Recall thc"it the "null tool n

has its center at the surface of the tool mOW1ting flange aod its coordinate
axes parallel to that of the last joint o·f the robot, and i&' represented by
the transformation [0,0,0,90,-90,OJ.

For example, if a hand is mOW1ted to the flange and it is desir~d to change
the tool setting to compensate for a -/00 millimeter distamce froul the flange
out to the fingers, one would type the following lines. (Recall that under­
lined characters indicate those typed by the user, and n®n represents the
RETURN key.)

.POINT HAND®------
X/JT1

0.00
CHANGE?

,,100®
0.00

CHANGE?

®
.TOOL HAND®
OK

Y/JT2
0.00

0.00

Z/JT3
0.00

100.00

O/JT4
90. 000

90.0'00

A/JTS
-90.000

-90.000

T!J'I'6
0 .• 000

O. DOL.'

In cases where a tool with an unusual configuration is to be used, or when
the toolaimensions must be compensated for tool-tip wear, it is convt~nient

to use comp:>und transformations to define and update the tool transfo.rma­
tion. A short VAL program is presented below that can be used to define
-tool transformations. This program only requires that the operator be c'!!ble
to accurately position the robot at a point in the robot workspace with the
same orientation using two different tools. The selected referenc.e po~i.nt

can be located anywhere in the robot workspace. However, locations with the
robot fully outstretched or tucked in should be avoided to improve computa-­
tional accuracy.

In the following program, it is assumed that the robot has a tool attachecl
whose transformation is already known.

Page B.,..2

1 • TYPE
2. TYPE
3. PAUSE
4. REMARK
5. TOOL
6. HERE

7. TYPE
8. PAUSE
9. REMARK

10. REMARK
11. TOOL
12. HERE
13. INVERSE
14. SET
15. TOOL
16. TYPE
17. TYPE
18. STOP

DEFINING A TOOL TRANSFORMATION

MOVE THE TOOL TIP TO THE SELECTED REFERENCE LOCATION,
SET "REF. TOOL" EQUAL TO THE TRANSFORMATION FOR THIS
KNOWN TOOL, THEN TYPE "PROCEED<RETURN>".
HERE'S WHERE THE REFERENCE LOCATION IS DEFINED
REF. TOOL
REF.WC
INSTALL THE NEW TOOL, MOVE ITS TIP BACK TO THE
REFERENCE LOCATION, AND TYPE "PROCEED<RE'I'URN> ".
NOW COMPUTE THE NEW TOOL TRANSFORMATION, "NEW. TOOL-".
DEFINE" ACT" TO BE THE CURRENT ROBOT LOCATION.
REF. TOOL
ACT
ACTI = ACT
NEW.TOOL = REF. TOOL: ACTI: REF.LOC
NEW. TOOL
ALL DONE, THE TOOL TRANSFORMATION HAS BEEN SET EQUAL

TO THE VALUE OF " NEW. 'I'OOL" •

(

Because of computational errors introduced when compolIDd transformations are
u-til ized, the accuracy of the program presente d above can be improved by
usirlg a simple tool with no oblique rotations as to-he reference tool. In
fact, if the mounting flange of the robot can be us1ed without a tool as the

. initialpointel~, the most computationally accurate results can be obtained.
In this case, the referenc-e tool would be the defa.ul t "null tool" and the
program above can be simplified by deleting the refere nces to "REF. TOOL" in
1 ine s 2, 5, 11, and 14.

After this prog-ram has been executed once, the t.ool tral'1sf'ormation can be
updated by simply positioning the new tool at the same re.ference location as
before and starting execution of the above program at step -,11. As long as
the values of "REF. TOOL" and "REF.LOC" have not been altered, a new tool
transformation will automatically be computed and asserted. This is a con­
venient method for occasionally altering the tool transformation to account
for tool wear.

(

(

APPENDIX C

CONTINUOUS PATH MOTION

The Continuous Path feature is provided for those a~plications which require
that the robot not stop at each location to which it moves. Instead, the
motion of the robot smoothly transitions between motion commands, subj ect to
the maximum allowable accelerations of the robot.

Such transitions can occur between any combination of straight-line and
joint:-interpolated motions. Thus,_ for example, a continuous motion could
consis-t of a straight-line motion followed by a joint-interpolated motion
and a final straight-l ine motion. Any number of motion segments can be
strung together.

C.1 Controlling Continuous path

The Continous Path feature is activated Whenever the system switch CP is
ENABU~'d, which is the defaalt condition when VAL is initialized. While
continuous path is activated, all robot motions are smoothlytransitioned
unl"ess a program instruction i~" executed. This forces an interruption of
the continuous path. After being _interrupted, continuous path resumes with
the next motion instruction execute,.i.

The following instructions cause a co.ntinuous motion to be interrupted =

BASE, BREAK, CLOSEI, DELAx r
, DISABLE, ENABLE, FR1\ME,

GRASP, HALT, HERE, IGNORE:, INVERSE, OPENI, PAUSE,
REACT, REACTI, RELAX, SET, SETI, SHIFT, STOP,
TOOL, TYPE, TYPEI, WAIT, WEAVE 0 (if weaving is on)

C.2 Considerations During Continuous Motion

There are certain considerations that should be kept in mind while using
continuous motions because they can affect the f~rformance of the system.

Because of the computation time needed to plan the transitions between
motion segments, there is a limit on how closely spaced commanded locations
can be. If locations are too close together, ther(~ is not be enough time
for VAL to plan the transition from one motion to' the next, and there is a
break in the continuous motion. This means that tl'1e robot stops instan­
taneously at the intermediate location. The min'imwn spacing that can be
used between locations before this effect occurs is (ietermined by the time

Page C-2 CONTINUOUS PATH MOTION
Considerations During Continuous Motion

(

taken to complete the motion from one location to the next. Straight-line
motion can be used if the motion takes more than about 140 ms.
Joint-interpolated motion can be used with motion times down to about 60 ms.
Thus, joint-interpolated motions should be used if possible when closely
spaced locations are desired.

Dur ing continuous motion, a SIGNAL instruction has its effect at the beg in­
ningof the next transition.

C.3 Program Instructions

The following two instructions are available if the VAL system in use
includes the Continuous Path feature.

BREAK

Interrupts the continuous path befor.e the next motion instruct~on.

instruction has no effect if continuous path is not active.

WEAVE <distance>, [<cycle time>] ,[<dwell>]

This

(

This instruction initializes the parameters for a sawtooth weaving motion
to be superimposed on the following straight-line motion. Once initiat­
ed, weaving continues until (1) it is term.inated with a WEAVE 0 instruc­
tion, (2) a joint-interpo~ated motion is performed, or (3) when the robot
stops due to a break in continuous path or the end of a regular motion.
Note that turning off weaving causes a BREAK in a continuous motion.

The distance argument specifies the peak-to-peak amplitude of the weave,
and is limited to a maximum of 256 mm; weaving is disabled if the dis­
tance is zero. The second argument specifies the weave cycle time, which
is limited to a maximum of 327.67 seconds. If the cycle time is omitted,
oris less than the minimum p:Jssible, the minimum p:Jssible cycle time is
used. The final argument can be specified to have all robot motion stop
at the extreme weave positions, the apexes of the sawtooth pattern. This
dwell period is limited to 327.67 seconds at each extreme.

WEAVE 55,10 Initialize the parameters for a weaving motion
a peak-to-peak amplitude of 55 rom, a 10-second
time, and no delays at the extreme positions.

with
cycle

(

APPENDIX D

SYSTEM DIAGNOSTICS AND MODIFICATON

The following monitor commands provide the abi~ity to test various
cornp:>nl:nts in the robot system ,and to use the results to modify certain
parame"ters stored in VAL. These commands can be issued only when no program
is being executed. Diagnostic programs are written by Unimation.

DIAGNOSTIC <file name>

[. J Reads in the specified system-diagnostic file from the floppy disk­
ette and starts its execution. Certain diagnostic programs may require
that VAL be started in a special manner. Refer to the documentation for
the program to be used.

DIAGNOSTIC POTCAL

OVERLA Y <fil e name>

Read a diagnostic program from the floppy-disk file
named POTCAL.

[.) Reads in new cal ibration data from the specified floppy-disk file
(previously written by a diagnostic program) and uses it to replace the
robot calibration parameters contained in VAL. This command must be
followed immediately by a CALIBRATE command for the data to be correctly
utilized. (Power to the robot is automatically turned off by the OVERLAY
operation.)

OVERLAY CALIB Read new calibration data from the floppy-disk file
named CALIB.

(

(

(i

AFPENDIX E

CHAI'1"GES MADE TO VAL

Version Changes From .E.drlier~~

12 Changed message displayed at turn-on
New monitor commands: DIAGNOSTIC, LOAD,

OVERLAY, STORE, SWrrCH, and TEACH
New program instructions: ALIGN, BASE,

DEPARTS, DISABLE, ENABLE, HALT,
MOVEST, MOVET, and NEST

New switches: MESSAGBS, CET, SRV.ERR,
CP, EHAND, Clnd VISION

* Changed the editor's T teach mode
Added TS teach mode to the editor
Changed messages displayed when execution terminates
CALIB can be entered as CALIBRATE
STATUS information includes tool transformation

* Eliminated GO and MOVE I instructions
Old DEPART instruction renamed to DEPARTS
DEPART instruction now gives joint-interpolated motion

* DRIVE instru~tion now takes speed in3tead of time
Effects of OPEN, CLOSE, OPENI, and CLOSE I expanded
GRASP now acts on the pneumatic control system
Added optional string to STOP instruction
Added continuous path feature, which includes:

CP switch, BREAK and WEAVE instructions

11 * Added <dZ> argument to BASE comm ,md
* TOOL command and instruction can noW'

take a transformation as argvment
Changed argument list for LISTP command
SET instruction now works with precision

points as well as transformat·j.ons
Added INVERSE instruction
Added FRAME instruction

* Delete,d SIGON and SIGOFF instructiuns
Added SIGNAL instruction
Added compound transformations

* The indicated change could significantly affect programs
prepared for an earlier version of VAL.

and procedures

,
I
1
I
I,
I

(
I,
I
I,
I
I,
I
I,
I,,
I,,
I,,
I
I
I
I
I,
I
I
I,
I,,

(I
I,
I,,
I,
I
I
I
I
I,
I
I,
I,,
I,
I
I,
I
I,,
I
I,,

(I,,
I,
I,

APPENDIX F'

VAL MESSAG'ES

While using the VAL system, it is possible for certain abnormal conditions
to occur. For example, if cornmantls or instructions are not entered in the
correct way, or if some othl~r indiscretion is attempted, Vl'.L rej ects the
input. The usual response i.s to output to the system terminal an indication
of what is wrong so the user can correct the error. The following list con­
tains all the error messageS' produced by VAL, explains what they mean, and
indicates what should be done in response.

This list also incl udes a variety of informational messages which VAL

displays under certain circ\mstances.

ABORTED

Explanation: The last command requested, or the user program which was
executing, has been aborted at YOlrr request.

User action: None.

AMBIGUOUS COMMAND

Explanation:

User action:

VAL could not interpret the last corom and
because not enough characters were ente\red
the function.
RetY1?e the line, entering more character·S.

or instruction
for the name of

ARE YOU SURE (yIN) 7

Explanation: The requested command will have a significant effect on
the state of your system, and VAL wants to know if you
really want it to happen.

User action: To have VAL continue, type "Y" followed by a carriage
return. An "N" followed by a carriage return, or just a
carriage return, causes the command to be aborted.

* ARM DISABLED FOR TESTING*

Explanation: This is a warning to indicate that Vl'.L has been started in
its diagnostic-test mode. In t;lis mode, power to the

•robot cannot be turned on and user programs cannot be
executed.

User action: Continue with the test procedure. If' this message occurs
during normal system use, refer to your system equipment
manual.

Page F-2

ARITHMETIC OVERFLOW

VAL MESSAGES

(

Explanation: The result of a calculation was too large for the computer
to handle, possibly because of division by zero. Keep in
mind that integer variables can only assume values in the
range from -32768 to +32767.

User action: Modify the program as required.

BAD ARITHMETIC OPERATION

Explanation: An inval id arithmetic operator was encountered, probably
because of a typing error.

User action: Retype t:he line, correcting the error.

BAD COMPARISON OPERATOR

Explanation: An invalid comparison operator was encountered, probably
because of a typing error.

User action: Retype the line, correcting the error.

* BAD POT*, JT n

Explanation:

User action:

'll'BAD SWITCH*

(For the PUMA robot only)

The potenth"),meter circuitry for the indicatE\Q joint
malfunctioned. Normally, this error indicates that
pot reading did not change as the corresponding joint
!lJ.oved.
Refer to your system equipment manual.

was
(

Explanation: An invalid switch name was encountered, probably because
of a typing error.

User action: Check the switch name and retype the line.

BRANCH TO UNDEFINED LABEL

Explanation: A program instruction references a program label which is
not defined in the program. Either the label is missing,
or was mistyped when def"ined or in the reference.

User action: Check the label definition and reference.

CAN'T GO ALONG STR LINE, USE JOINT MOTION

Explanation: Movement to the requested location cannot be done along a
straight line because too la:r"ge of an orientationql change
of the outer joints would be l~equil::-ed.

User action: Use joint-interpolated motion instead of straight-line
motion, or break the motion up into a series of motions
requiring less rotation of the outer joints. (

VAL MESSAGES

* CAN '1' GO ON, USE; "EXEC"*

Page F-3

Explanation: Program execution cannot be initiated in the manner
attempted. Normally, this error is signalled when an at­
tempt is made to execute a PROCEED, RETRY, or NEXT command
after a program has completed all its cycles.

User action: Use the EXECUTE command to restart the program from the
desired instruction.

CAN'T INTERPRET LIN'lG.:

Explanation: The argument list of the last command or instruction could
not be interpreJted by VAL; or, if the message occurred
while loading a location file from the floppy disk, the
file w'as proba:bly created by a VAL system for a different
type of robot and the indicated location is not compatible
with the VAL system in use.

User action: Check the synta;1(of the function and enter the line again.
In the case of an error while loading from the floppy
disk, either cha,nge to the correct diskette or define the
indicated locatio'n(s) after loading is

CHECKSUM ERROR

Explanation: While transferring a file to or from the floppy disk, a
transmission error occurred.

User action: Attempt the transfe r again.

CLOCK OVER RUN

Explanation:

User action:

VAL ran out of time whil e trying to compute the
of position commands for the joint servoes.
happens if a hardware failure has occurred.
Refer to your system equipment manual.

next set
This only

COMMUNICATION ERROR

Explanation: The floppy-disk drive received an invalid command from
VAL.

User action: Try your command again.

COMPUTER MODE DISABLED

attempted requirE.~s computer control of' the
"Computer Mode" was not selected on the ma'nual

Explanation:

User action:

The command
robot, but
control.
Select computer
command.

mode on the manual control and reissue the•

Page F-4

DIRECTORY ERROR

VAL MESSA.GES

(

Explanation: An error occurred while accessing the floppy-disk direc­
tory, possibly because the diskette was not formatted or
the diskette has been damaged in some way.

User action: Make sure the correct diskette is being used, that it is
properly installed in the drive, and that it is formatted.

DISK FULL

Explanation: There is no more space available on the floppy diskette
for file storage.

User action: Use the COMPRESS command to regain space prev iousl y occu­
pied by deleted files, delete unneeded files and COMPRESS,
or use another diskette.

"DO" NOT PRIMED

Explanation:

User action:

DUPLICA.TE LABEL

A DO command
instruction
issued.
P1;'ovide the

was attempted without specifying a program
to be executed, and no previous DO ~ad been

desired instruction with the DO command.

(

Explanation: The same program label is used more than once in a user
program.

User action: Change one of the duplicate labels.

EXITING TO ODT!

Explanation: In response to the DONE command, VAL is stopping and con­
trol is reverting to the computer hardware Octal Debugging
Tool (ODT).

User action: Issue the desired ODT commands. (To restart VAL type
"173000G".)

* [FATAL] ADC DEAD*, JT n (For the PUMA robot only)

Explanation: ,The analog-to-digital converter fOl; the indicated robot
joint is not responding.

User action: Refer to your system equipment manua~.

* [FATAL] CPU ERROR*, TRAP TO nn FROM mInmrnmm

Explanation: A computer error occurred because of a bad read from
memory or because of noise on the data bus. (Such errors
occur infrequently even when the system is functioning
normally.)

User action: Restart VAL by typing "173 OOOG" and respond with a "N" to
the inquiry regarding initialization. If this error
occurs repeatedly, refer to your system equipment manual.

(

Vl\L MESSAGES

[FATAL] ENVELOP ERROR, JT n

Page F-S

(For the PUMA and PUMA 250 robots)

Explanation:- The indicated joint was not tracking the commanded posi­
tion with sufficient accuracy, indicating a failure in the
hardware servo system.

User action: Try to perform the motion at a slower speed. If the error
reoccurs, refer to your system equipment manual.

* [FATA.L] LOST ENCODER SYNC*, JT n (For the PUMA and PUMA 250 robots)

Explanation: The encoder circuitry for the indicated joint is loosing
or gaining counts.

User action: Refer to your system equipment manual.

* [FATAL] OUT OF RANGE *, JT n

Explanation: During its initialization sequence, VAL f01.md the indicat-­
ed joint out of its allowed software-limited range.

User action: Move the indicated joint manually toward the middle of its
range and restart VAL by typing "173000G", or powering up
again.

* [FATAL] SERVO DEAD*, JT n

Explanation: The joint controller for the indicated joint is not res­
ponding to commands from VI\L.

User action: Refer to your system equipment manual.

* [FATAL] SERVO RAM ERROR*, JT n (For the PUMA and PUMA 250 robots)

Explanation: During its power-up sel f-check, the indicated joint pro'~

cessor f01.md an error in its RAM memory.
User action: Refer to your system equipment manual.

* FILE ;zI.I,READY EXISTS *

Explanation: There is already a file on the floppy diskette with the
name supplied to the storage request.

User action: Reissue the storage request with a different file name, or
delete the old file on the diskette.

FILE ALREADY OPEN

Explanation: The floppy-disk cannot access another file because the
last file access was not successfully completed, possibly
because the disk door was opened too soon.

User action: Unplug the disk from the controller momentarily so that it
will undergo a power-up reset. '

Page F-6

FILE FORMAT ERROR

V1\L .MESSAGES

(

Explanation:

User ac tion :

FLOPPY NOT READY

The requested floppy-disk file is not iD a format
able to VAL. Either because it was not created by
the file has been corrupted..
Use another diskette or reference another file.

accept­
VAL, or

Explanation: The floppy-disk drive is: not prepared to cor.\municate with
the controller.

User action: Make sure the drive is plugged in, the diskette is cor­
rectly inserted., and the door is fully c:losed.

*E'UNCTION TIME OUT * , JT n

Explanation: The indicated joint took too long to complete the last
motion, possibly because the robot is blocked and cannot
reach its destination.

User action: Attempt the motion again, wi t·_h any necessary changes.

HALT: STOPPED AT STEP n

Explanation: A HALT instruction has been executed, and thus execution
of the current user program has terminat:.ed. If the \:J.ser
program inqluded a text string in the HALT 3_nstruction, it
is displ ayed on the line above t-he HALT messa':.'le.

User action: Any monitor command can be issueB, but PROCEED cannot be
used to resume progam execution.

HAND CLOSED TOO FAR

Explanation: The hand closed more than the specified amount durin0 a
GRASP instruction, either because the object to be grask~ed

was not present or because the specification was inco:r.-­
recto

User action: Change the location of the obj ect, the grasp dist:ance, or
whatever else is necessary.

HARDWARE SERVO DISABLED

(

Explanation:
User action:

ILLEG~L CHANNEL

ARM POWER is not turned on.
Turn on ARM POWER and reenter the last command.

Explanation: The external signal channel number specified is not in the
allowed range of one to eight.

User action: Correct the channel number. (

VAL MESS~GES

ILLEGhL FUNCTION

Page F-7

Explanation: The command or instruction attempted was not recognized by
VAL, because of a erJCor in the function name. (This error
is often caused by miLstyping the function name, or trying
to use a command as an instruction or vice versa.) If the
message occurred whil,3 loading a file from the floppy
disk, the file was probably created by a different VAL
system (different ver 8'10n or options) and the indicated
line is not compatibl,s with the VAL system in use.

User action: ChecK: the function speLL ing/usage and re-enter the com­
mand. In the case of an error while loading from the
floppy disK, either change to Ule correct diskette or,
after loading is complett'ad, edit the effected program(s)
to restore the indicated in.struction(s) •

ILLEG1\.L IN ftJORLD OR TOOL MODE

Explanation: The command attempted can no·t be processed when the manual
control has TOOL or WORLD> mode selected.

User action: Select another mode on th.e manual c.ontrol and retry the
command.

ILLEGAL JOIN'r

Explanation:
User action:

The joint number specified is not in the allowed range.
Enter the command again wi,th a correct joint number.

~'.\

INITIALIZATION ERROR

Explanation: VAL was not able to FORMAT the floppy-disk directory
because the diskette is defective.

User action: Use another diskette.

INITIALIZE (YIN)?

Explanation: During its startup sequence VAL is asking whether it is
okay to go ahead and initialize the system. This will
cause any user information currently in memory to be losl:.

User action: If the system has just had power appl ied, you MUST respond
with a "Y"; otherwise you can decide whether you want the
RAM memory to be erased and have the various system status
conditions reset to their default settings.

INPUT BLOCK ERROR

Explanation: A read error has occurred while using t~e DIAGNOSTIC or
OVERLAY command to read a binary-data file from the floppy
disk. This indicates that the data in the file is
corrupted.

User action: Try the operation again. 'If the error recurs use another
diskette.

Page F-8

'~INPUT ERROR* J' TRY AGAIN

V~L MESSA.GES

(

Explanation: The input provided was not consistent with what VAL
expected.

User action; Provide another response.

~'INVALID LABEL*

Explanation:
User action:

INVALID NUMBER

The program label was not an integer from 0 to 32767.
Reenter the line with a valid label.

Explanation: The line contains a number which is not an integer between
-32768 and 32767.

User action: Reenter the line with a valid nQ~ber.

INVALID SOLUTION, ERROR CODE n

Explanation:

User action:

For codes 1 to 7, the requested motion
software-limited range of motion for· the
Codes 8 and 9 indicate that the requested
close to the col umn of the robot, or to
tively.
Redefine t.he destination location.

was beyond the
indicated joint.
location was too
far out, respec-

*:LOCATION OUT OF RANGE *

Explanation: The X, Y, or Z coordinate of the de~tination location
had a val ue too large to be reprE~sented in the COlllPut;er.
For example, a sequence of SHIFT inst1'.-uctions has mbved
the location very far. The permitted range for the coor­
dinates is -1023 mm to 1024 mm for the PUMA robot, and
-699 mmto 700 mm for the PUMA 250 robot.

User action: Correct the user program.

LOCKED IN RUN HOLD MODE!

Explanation: Program step execution is blocked because the
RUN/HOLD/RESTA.RT selector is in the HOLD position.

User action: Set the RUN/HOLD/RESTA.RT selector to RUN.

WARNING

The executing user program will immediately re,sume execu­
tion. This may cause the robot to move suddenly.

MEMORY ERROR, LOC nnnnnn

Explanation: A hardware fail ure was detected at the indica.ted location
during the check of RII..M by VAL.

User action: Refer to your system equipment manual.

(

VA.L MESSl\GES

MISSING ARGUMENT

Page F-9

Explanation: One or more of the arguments required for the requested
command or instruction was not providedr

User action: Check the function syntax and reenter the line.

NO PROGRAM SPECIFIED

Explanation:
User action:

No program was specified for an EXECU'rE or NEXT command.

Type the line again, providing a program name.

NO PROGRAM STEPS DEFINED

Explanation: The program refer~nced in an EXECUTE or NEXT command does
not exist, possibly because the program name was mistyped.

User action: If necessary, create the program with the editor or by
reading it from the floppy disk; then reenter the line.

NONEXISTENT FILE

Explanation: The requested file is not stored on" the floppy diskette
currently in the disk a.rive. Either the name was mistyped
or the wrong diskette is being read.

User action: Check the file name; use the LISTF command to display the

directory of the diskettE~.

NOT AT READY LOCATION (F'or the PUMA 250 robot)

Explanation: The NEST instruction was att:empted with the robot at some
location other than the READ Y location.

User act.ion: Insert a READY instruction bE:~fore the NEST instruction and
reexecute the program or tYlJe DO READY to move the robot
to the required location.

NOT CALIBRATED, GO ON (yIN)? (For thE:~ PUMA and PUMA 250 robots)

Explanation: The robot servo system is not cal ibrated, and thus subse­
quent motions may not go to the exr:>ected locations.

User action: If it's okay to proceed, respond with a "Y". If not, res­
p:md with "N" and then issue a CAL,IBRATE command.

NO ZERO INDEX, JT n (For the PUHA and PUMA 250 robots)

Explanation: During execution of the CALIBRATE command, the control
system did not detect a zero-index m ark for the indicated
joint.

User action: Refer to your system equipment manua.l.

OK

Explanation: VAL is acknowledging the completion of the last cormnand.
User action: None.

Page F-10 VAL MESSAGES

(

PANIC BUTTON HIT

Explanation:
User action:

The OFF button on the manual control was pressed.
Reselect COMPUTER mode on the manual control before resum­
ing program execution.

PAUSE: STOPPED AT STEP n

Explanation: A PAUSE instruction ha.s been executed, and thus the cur­
rent user program has .suspended execution. Program execu,...
tion will start at the indicated step number if resumed.
If the user program included a text str ing in the PAUSE
instruction, it is displayed on the line above the PAUSE
message.

User action: Any monitor command can be issued. To continue exeoution
of the program, type "PROC.EED".

PROGRAM COMPLETED: STOPPED AT STEP n

Explanation: The user program has been executed the number of times
specified in the EXECUTE command which initiated execu­
tion. If the user program included a text string in the
STOP instruction at the logic~l end of the program, it is
displayed on the line above the completion message.

User action: Any monitor command can be issued, but PROCEED cannot be
used to resume progam execution.

PROM ERROR, BANK n

Explanation: The indicated section of the VAL PR~~ memory has a value
which is changed from when the PROM w'as created.

User action: Refer to your system equipment manual.

STORAGE AREA FORMAT ERROR

Explanation: A momentary hardware failure has corrupte'd the user data
in RAM memory. The user programs and locations currently
in memory may no longer be valid.

User action: Attempt to save as much as possible onto cl floppy disk­
ette. Then restart VAL, responding wi th a fly" to the
initialize query.

STORAGE SPACE EXHAUSTED

Explanation: There is no more space in RAM memory for user ~rograms or
location variables.

User action: Delete unused programs and location variables.

(

(
"

VAL MESSAGES

STR LINE MOTION CAN'T ALTER CONFIGURATION

Page 1'-11

Explanation: A change in configuration was requested during a straight··
line motion. This is not allowed.

User action: Delete the configuration change request, or use a joint­
interpolated-motion instruction.

TOO MANY SUBROUTINES CALLED

Explanation: An attempt to branch to a subroutine was made while there
were already ten programs suspended.

User action: Reorganize the program logic to eliminate one or more
subroutine calls.

UNDEFINED LOCATION

Explanation: The location variable specified has not been given a
val ue.

User action: If the
able a
reading

variable
value

a val ue

name was correctly entered,
by issuing the appropriate
from the floppy disk.

give the vari­
command, or by

UNEXPECTED END OF FILE

Explanation: While reading a file from the floppy disk, the end of the
file was encountered unexpectedly. The file may not have
been correctly closed when it was written, possibly
because the disk was disrupted before the writing was
completed.

User action: Try again to read the file.

VARIABLE TYPE MISMATCH

Explanation: one or more of the variables in the line is of a type
inconsistent with the other variables or with the type
required by the command or instruction.

User action: Check the syntax for the function and reenter the line,
correcting the mismatch.

The robot
location
represent
Issue the
variables.

"WARNING: NO ARM CALIB*'

Explanation:

User action:

(For the PUMA and PUMA 250 robots)

servo system is not calibrated, and thus, any
variables that are taught will not accurately
the location desired.

CALIBRATE command and reteach the location

(

\
. ,/..'

//t.\

r,
,
r,
,
,
,
,
,
,
I,
,
I,
,
I,
,
I,
r

I

(;
,
,
,
,
I,
,
I,
,
I,
,
I,
,
I,

(;
,
,
,
I

APPENDIX G

SUMMARY OF VAL COMMANDS AND INSTRUCTIONS

G.1 110NITOR COMMANDS

In the following commands, "location" refers to a "precision p::>int", "trans­
formation", or "comPJund tran£ormation" unless otherwise noted.

Defining Locations Page

B

DP

H

PO

TE
TO
W

Program Editing

ED

BASE [<dX>], [<dY>] , [<dZ>], [<Z rotation>]
DPOINT [<location 1>] , ••• , [<location n»

(compound transformations not allowed)
HERE <location>
POINT <transformation> [= <trans 2>] ••• [:<t n>]

or POINT <precision point> [= <prec. point 2>]
TEACH <location>
TOOL [<t~ansformation>]
WHERE

EDIT [<program» , [<nstep>]
<any program instruction>
<carriage return>
C <program>, [<nstep>]
D [<nstep»
E

I

L

P [<nstep>J
R <character string>
S [<step>]
T

TS

4-3
4-2

4-2

4-1
4-3
4-4
4-3

4-5
4-6
4-6
4-6
4-6

4-6
4-6
4-6
4-7
4-7
4-7

4-7
4-8

Program and Location-Data Listing

DIR
LISTL

LIs'rp

DIRECTORY
LISTL [<location 1>] , ••• ,[<location n>]

(compound transformations not allowed)
LISTP «program 1>] , ••• ,[<program n»

4-8
4-8

4-9

Page 'G-2

Program and Location-Data Storage

SUMMARY OF VAL COMMANDS ~ND INSTRUCTION$
Monitor Command s

(

COMP
DE
ER
FO
LISTF
LOAD
LOADL
LOADP
STORE
STOREL
STOREP

Program Control

A

DO
EX
N
PR
R
SP

COMPRESS
DELETE <file><ext>
ERASE
FORMAT
LISTF
LOAD <file>
LOADL <file>
LOADP <file>
STORE <file> [:; <program 1 >] , ••• , [<program n>]
STOREL <file> [=:= <program 1 » , ••• ,[<program n>]
STOREP <file> [:; <program 1>] , ••• , [<program n>]

ABORT
DO [<program instruction>]
EXECillE [<program>], [<nloop>], [<step>]
NEXT [<program>], [<nloop» , [<step»
PROCEED
RETRY
SPEED <val ue>

4-12
4-12
4-12
4-10
4-11
4-12
4-12
4-11
4-11
4-11
4-11

4-13
4-14
4-13
4-14
4-14
4-14
4-13 (

System Status and Control

CA
'DON
FR
LIM
STA
Z

System Switc he s

DIS
EN
SW

CALIBRATE
DONE
FREE
LIMP
STATUS
ZERO

DISABLE <switch>
ENABLE <switch>
SWITCH [<switch>] , ••• ,[<switch>]

4-15
4-16
4-16
4-15
4-15
4-16

4-17
4-17
4-17

System Diagnostics and Modificaton

DrA
o

DIAGNOSTIC <file name>
OVERLAY <file name>

0-1
0-1

(
\

SUMMARY OF VAL COMMANDS AND INSTRUCTIONS

G.2 PROGRAM INSTRUCTIONS

Page G-3

h "f t a "p~ec~s~on rr.int",In t e following instcructions, "location re ers 0'" ~ ~ r-

"transformation", or "compJlJIld tr·anformation".

Robot Configuration Control

AB

BE
FL
LE
NOF
RI

Motion

AL
APPRO
APPROS
DEPART
DEPARTS
ORA
DRI
MOVE
MOVES
MOVEST
MOVET
NE
READ

Hand Control

CLOSE
CLOSE I

GR
OPEN
OPENI
REL

Integer Variable

SETI
TYPE I

ABOVE
BELOW
FLIP
LEFTY
NOE'LIP
RIGHTY

ALIGN
APPRO <location> [!), <di~s 'tance>
APPROS <location> [!], <di· stance>
DEPART <distance>
DEPARTS <distance>
DRAW [<OX>], [<dY>], [<dZ>]
DRIVE <jt>,<change>,<speed>
MOVE <location>[!]
MOVES <location>[!}
MOVEST <location>,<hand opening>
MOVET <location>, <hand openinsr>
NEST
READY

CLOSE [<hand opening>]
CLOSEI [<hand opening>]
GRASP <hand opening>, [<label>]
OPEN [<hand opening>]
OPENI [<hand opening>]
RELAX

SETI <i.var> = <i.var 2> [<operation> <i.var 3»
TYPE! <i .var>

5-2
5-2
5-2
5-1
5-2
5-1

5-3
5-4
5-4
5-4
5-4
5-3
5-5
5-2
5-3
5-3
5-2
5-5
5-5

5-6
5-6
5··6
5-6
5-6
5-6

5-7
5-7

Page G-4 SUMMARY OF VAL COMMANDS AND INSTRUCTIONS
Program Instructions

"

(

Location Assignment and Modification

5-8
5-8
5-9

= <trans 2>,<trans 3>,<trans 4> 5-9
5:..8
5-9

FRAME <transformation>
HERE <location>
INVERSE <transform> = <t',rans 2>[:<t 3>] ••• [:<t n>]
SET <transformation> = <t.rans 2>[:<t 3>] ••• [:<t n>]

or SET <precision point> = <precision point>
SHIFT <transformation> BY [<dx>], [<dy>] , [<dz>]
TOOL [<transformation>]

FR
HE
INV
SET

SH
TO

Program Control

GOS
GOT
HA'
IF'

IFS

IG
PA.

REACT
REACTI
RET
51
ST
WA

GOSUB <program>
GOTO <label>
HALT [< str ing>]
IF <i.vax> <relationship> <i.var 2> THEN <label>
IFSIG [<channel>], [<channel>] ,

[<channel» ,[<channel>] TH~N <label>
IGNORE <channel> [ALWAYS]
PAUSE [<str ing>]
REACT <channel> , [<program>] [ALWAYS]
REACT1 <channel>, [<program>] [ALWAYS]
RETURN [<skip count>]
SIGNAL <channel>, [<channel>, ••• ,<channel>J
STOP [< str ing>]
WAIT <channel>

5-10
5-10
5-11
5-11

5-12
5-13
5-11
5-12
5-13
5-10
5-12
5-11
5-13

(

Trajectory Control

CO
FI
INTOF
INTON
NON
NO
SP

COARSE [ALWAYS]
FINE [ALWAYS]
1NTOFF [ALWAYS]
INTON [ALWAYS]
NONULL [ALW.AYS]
NULL [ALWAYS]
SPEED <val ue> [ALWAYS]

5-14
5-14
5-15
5-15
5-15
5-15
5";'14

Miscellaneous

BA
DEL
01

EN
REM
TYPE

BASE [<dX>], [<dY>] , [<dZ>] , [<Z rotation>]
DELAY <time>
DISABLE <switch>
ENABLE <switch>
REMARK [<string>]
TYPE [<string>]

5-15
5-16
5-16
5-16
5-16
5-16

Continuous Path Motion

BR
WE

BREAK
WEAVE <distance>, [<cycle time>], [<dwell>]

C-2
C-2

(

A.bbrev iations .•
ABORT
Aborting Programs
ABOVE
ALIGN
ALWAYS argument
Angle Brackets
Angles
APPRO
APPROS
Arguments

Numerical
Optional

Arithmetic Operations
Assignment Instructions
Asterisk Prompt

BASE (Command)
BASE (Instruction)
BELOW
Brackets
Branching
BREAK

C (Change)
CALIBAATE
Calibr,::ltion
Cal ibr."ition Data
Changes Made to VAL
Channel Numbers
Channels
Character Replacement
CLOSE
CLOSEr
COARSE
Command Format
Commas
Comment Statement
Communication, External
Compound Transformations

Computing
COMPRESS
Computer

Mode
Program

Conditional Branch
Configuration Change
Configuration, Standard

INDEX

1-3, 2-4, G- 1
4-13
2-10
5-2
5-3
5-12, 5-14
1-3
1-3
5-4
5-4

1-3
1-3
5-7
2-18, 5-7, 5-8, 5-9
1-2, 3-2

4-3
5-15
5-2
1-3
2-16,5-6,5-10,5-11,,5-12,5-13
C-2

4-6
4-15
2-3, 4-15
D-1
E-1
1-4
5-9,5-12,5-1'3,6-3
2-16, 4-7
5-6
5-6
5-14
1-3
1-3
5-16
3-1, 6-3
3-5, 3-6, 4-1, 5-2, A-1
A-2
4-12

2-10
1-2
2-15
5-1,5-2,5-3,5-4
5-5

Index-2

Continuous Path
Control Instructions •
Control

Path
Traj ectory •

Conventions
Coordinates

Tool
",vorld

Counter
CP Switch
Creating Programs
CRT

Switch •
Terminal

D (Delete)
Debugging Programs •
Defining

Locations
Relative Transformations •

DELAY
DELETE.
Deleting

Disk Files •
Instructions •
Locations

DEPART •
DEPARTS
Devices

Communication
Peripheral

DIAGNOSTIC •
Diagnostic Programs
DIRECTORY
Directory

Disk •
Memory.

DISABLE (Command)
DIS'ABLE (In struc tion)
Disk

Fiies
Functions

Disk, Floppy •
Diskette
Display Terminal
Displaying Instructions
Distances
DO •
DONE •
Dot Prompt

3-9, C-1, C-2

5-9

3-7, 3-9, 4-8, 5-3, 5-4,' C-1 , C-2.
3-7
1-2

3-1, 4-4, 5-4, 5-9, B-1
3-1, 3-5, 3-8, 4-1, 4-3, 4..,.4, 5-3,
5-8, 5-9, 5-15
2-17
2-12, 4-17
2-5

· 4-16, 4-17
2-1

• 4-6
3-4, 3-6

• 2-8, 3-6, 4-1 ff, 4-7~ 4-8, 5..,.8

• A-1
5-16
4-12

• 4-12
2-15, 4-6
4-2
5-4
5-4

3-1
3-1

• D-1
3--1, D-1
4-8
2-19

• 4-11
• 4-8
• 4-17

5-16

2-19, 4-9

· 4-10, 4-11, 4-12
2-18, 3-1, 4-9, 4-10, 4-11, 4-12
2-18, 3-1, 4-9, 4-10, 4-11, 4-12
3-1

· 2-14, 4-6, 4-7
1-3

(4-14
4-16
1-2, 2-2, 3-2

(

(

Index-3

DPOINT
DRATtJ
DRIVE

,. 4-2
5-3
5-5

4-6
4-5
4-5, , G-1
2-14, 4-5
1-2,2-6,2-14
4-17, 5-5, 5-6
4-17
5-16
2-18
4-12
F-1
6-1
5-2
4-13
2-9, 3-6, 4-1 3 ,
4-14
2-8, 4-6

E (Exit)
'EDIT
Edit Func tions
Editing Programs
Editor
EHAND Switch
ENABLE (Command)
ENABLE (Instruction)
Equal Sign
ERASE
Error Messages
Examples
Exclamation Point (!)

EXECUTE
Executing Programs
Execution, Instruction
Exiting Editor
External

Communication
Signal s

,. 3-1,
3-1,

6-3
5-9, 5-12,

4-14

5-13, 6-3

GOSUB
GOTO •
GRASP

HALT
Hand Control
Hardware Servo
HERE (Command)
HERE (Instruction)

File
Deletion
Names

Files, Disk
FINE
FLIP •
Floppy Disk
FORMAT
Format of Functions
FRAME

Reference

4-12
4-9
2-19
5-14
5-2
2-18, 3-1, 4-9
4-10
1-3
5-9
3-1, 3-5, 4-3, 5-9, 5-15, A-1, A-3
4-16
2-5
4-16

5-10
5-10
5-6

5-11
4-7, 4-8, 4-17, 5-3, 5-5, 5-6, 5-16
5-14, 5-15
4-2
5-8

.,

Memory
Mode
Space,

Frame,
FREE
Free
FreE'!

Tndex-4

I(Insert)
Identification, System
IF
IFSIG
IGNORE
Initialization
Input Signal s
Inserting Instructions
Instruction

Deletion
Displaying
Editing
Execution
Format
Insertion
Replacement

Instructions
Assignment
Configuration
Control
Hand Control
Location Assignment
Location Modification
Miscellaneous
Motion
Program Control
Trajectory Control

Integer Variables
Integers
Interrogation, System
INTOFF
INTON
INVERSE

(
\

4-6
2-2
5-11
S-12
5-13
2-2, 4-16
5-12, 5-13, 6-3
2-17, 4-6

2-15, 4-6
2-14, 4-6, 4-7
4-5
4-14
1-3
2-17, 4-6
2-16, 4-6
1-2, 2-5, 3-3, 5-1, G-3
5-7, 5-8, 5-9
5-1
2-15
5-5
5-8
5-8
5-16
5-2 .(
5-9
5-14
2-17, 5-7, 5-11
"1-4, 5-7, 5-11
4-15
5-15
~i-15

5-9

Joint
Mode
Numbers
Variables

Joint-Interpolated Motion

L (Last)
Label s, Program Step
LEFTY
LIMP •
LISTF
Listing

Locations:
Programs

LISTL
LISTP
LOAD •

2-4
-~-4

3-5, 4-7, 5...;5

3-7, 4-7, 5-2, 5-4

4-6
2-15, 4-5, 5-6, 5-10, 5-11
5-1
4-15
4-11

4-8
4-8, 4-9
4-8
4-9
4-12

(

Index-5

• 2-8, 3-6, 4-1, 4-3,

• 4-8
• 2-20, 4-12
• 3-6, 4-1, 5-8, 6-2

3-5, 4-1
2-19, 3-1, 4-9, 4-11

• 3-4 ff, 4-1 ff l 4-7,
1-2, 3-3, 3-4, 4-1,
2-15

Loading
Locations
Programs •

LOADL
LOADP
Location

Definition •
Listing
Loading
Modification •
Names
S1:orage
Variables

Locations

Loop "

• 2-20,
• 2-20,
• 4-12

4-11

4-12
4-11, 4-12

4-7, 4-8, 5-8

4-11, 5-2, 5-8
5-2

2-4, 3-1, 3-4, 4-3, 4-7, 4-8

• 4-16
• 3-2

• 3-6, 4-1, 5-8, 6-2
2-14, 3-3, 4-5, 4-6, 4-7, 4-8
1-2, 3-2

• 4-1, G-1
• 4-1

4-13

• 4-5
• 4-8
• 4-15
• 4-9
• D-1
• 4-16

• 4-8
• 4-16
• 2-2, 4-14, 4-16,
.4-16, 4-17, 5-7,

5-16

F-15-11, "5-16,
5-16

5-4
5...4

5-2 ff, C-1, C-2
4-13, ~-5, 5-14

4-9,
3-8,

5-2,
5-3,

4-7,
3-7,
C-2
4-7,
4-8,
5-4

• 5-2
• 3-7,
• 2-9,
• C-1,
• 3-7,

3-8,
5-3,
5-2
5-3
5-3
5-2

Manual COntrol
Memory

Directory
Free Space

Messages •
MESSAGES Switch
Miscellaneous Instructions •
Modification

Location •
Program

Monitor
Monitor Commands •

Defining Locations •
Program Control
Program Editing
Program Listing
Status & Control
Storage
System Diagnostics •
System Switches

Monitor
Program
Prompt

Motion
Instructions •
Pa1:h •
Speed
con.tinuous Path
Joint-Interpolated
Straight-Line
Tool

MOVE •
MOVES
MOVEST •

.MOVET

Index-6

Names
Disk File
Location
Program

NEST
Nest
NEXT

NOFLIP
NONULL
Notation
NULL
Null Tool
Number Sign ("#")

Numerical Arguments

4-9
3-5, 4-1
4-5
5-5
2-3, ",'-15
4-14
5-2
5-15
1-2
5-15
4-4, B-2
3-5
1-3

(

Octal Debugging Tool (ODT)
ODT
OF8N
OPENI
Optional Arguments
Orientation
Output Signal s
OVERLAY
Overview

P (Print)
Panic Button
Pa-t:h

Control
Continuous

PAUSE
Period Prompt
Peripheral Devices
Pneumatic Hand
POINT
Position Error
Positions
Pound Sign (n# ")

Precision Points
Printing Terminal
PROCEED
Program

Control
Debugging
Editing
Editor
Examples
Execution
Instructions
Labels
Listing

3-3
4-16
5-6
5-6
1-3
1-2
5-12, 6-3
D-1
1-1 (

4-7
2-9

3-7, 3-9, 4-8, 5-3, S""4, C-1, C..~.,

3-9, C-1, C-2
5-11
1-2, 3-2
3-1
4-17, 5-5, 5-6
4-1
5-15
1-2
3-5
3-5, 3-6, 4-1, 4-3, 4-7, 4-8, 5..2
2-1, 3-1
4-14
1-2, 2-5, 2-6, 2-14
4-13, 5-9
3-4, 3-6
2-14, 4-5
1-2, 2-6, 3-3
6-1
3-6, 4-13
3-3, 5-1 (
4-5, 5-6, 5-10, 5-11
4-8, 4-9

Program (continued)
Loading
Modification
Names
Steps
Storage
Switching
Term ination

Programs
Diagnostic
Sample

Prompt
Monitor

Proportional Hand

Index-7

2-20, 4-11, 4-12
2-14, 3-3, 4-5, 4-6, 4-7, 4-8
4-5
3-3
2-19, 3-1, 4-9, 4-11
4-6
2-10, 3-6, 4-13, 5-11

3-1, D-1
6-1
2'-2
1,--2, 3-2
4-~ 7, 5-5, 5-6

R (Replace)
REACT
REACTI
READY
READY location
RECORD Button
Record Button
Reference Frame
Relational Test
Relative Transformations

Defining
RELA.X

REMARK
Replacing

Characters
Instructions

RETRY
RETURN
RIGHTY

.......

S (Step)
Sample Programs
Sensors
SET
SETI
SHIFT
SIGNAL.
Signal Lines
Signals

External
Input
Output
Testing

Single-step Execution
Software Servo
Spaces

,.

4-7
5-12
5-13
5-5
4-3, 5-5
4"'"3, 4-7, 4-8
2-13, 3-4
3-1, 3-5, 4-3, 5-9, 5-15, ~-1, A-3
5-11
3-5, A-1
A-1
,5-6
5-16

2-16, 4-7
2-16, 4-6
4-14
5-10
5-1

4-7
6-1
3-8
5-8
5-7
5-8
5-12
3-1
6-3
3-1
5-12, 5-13, 6-3
5-12, 6-3
5-12
4-14
5-15
1-3

Index-8

(
2-9

D-1
2-2

• 4-15
2-9, 3,·6, 4-15

4-'15
• 4-16, 4-17, 5-16

• 4-13
5-14
2-4
3-7, 3-8, 4-13, 5-5, 5-14
4-16, 4-17

• 4-15
2-9, 3-6, 4-1 5

2-19, 4-9, 4 ... 11
2-19, 4-9, 4-11
3-8, 4-8~ 5-3~ 5-4
3-4, 5-10, 5-12, 5-13

• 8'-1
4--17
2-12,4-16,4-17,5-14,5-16

(

5- 1-0, 5-11
5-10, 5,..11

5-10, 5-11

2-15, 4-5, 5-6,
2-15, 4-5, 5-6,
3-3, 4-5, 5-6,
5-11
2-10, 3-6, 4-13

3-1
3-1
4-11
4-11

• 4-11

Speed
SPEED

Command
Instruction
Knob

Speed, Motion
SRV.ERR Switch.
STATUS
S1:atus, System •
Step

Labels •
Numbers

Steps, Program
STOP •
St:opping Programs
St:orage

~cation •
Program

S'J?ORE
STOREL •
STOREP •
Storing

Locations
Programs •

Straight-Line Motion
. Subroutines
Summary of VAL •
SWITCH •
Switches
System

Diagnostics
Identification
Interrogation
Status
Status & Control
Switches

4-7
4-3
2-12, 3-4, 4-3, 4-7, 4-8
2-1, 3-1
1-2

T (Teach, joint)
TEACH
Teach Mode
Terminals
Terminology
Test

Grasp
Relational
Signal

The VAL System •
'rOOL (Command)
'rOOL (Instruction)
'rool

Control
Coordinates

• 5-6
5-11
5-12
3-1

• 4-4
• 5-9

• 4-7,
3-1,

4-17, 5-2, 5-3, 5-5,
4-4, 5-4, 5-9, B-1

~5-6, 5-16

(

Index-9

Tool (continued)
Mode 2-5
Hotion 5-3, 5-4
Null 4-4, B-2
Point 4-4, 5-9, B-1
Transformation 4-4, 5-9, 6-5, B-1

Trajectory Control 3-7
Instructions 5-14

Transformations 3-6, 4-1, 4-3, 4-8, 5-2, 5-8, A-1

Comp::>und 3-5, 3-6, 4-1, 5-2, A-1
Relative 3-5, A-1

TS (Teach, Straight) 4-8
Turning Off System 2-4
Turning On System 2-2
Tutorial 2-1
TYPE 5-16
TYPE I 5-7

Unconditional Branch 2-15
User Program 3-3

VAL

Messages F-1
Program 3-3

Values . 1-4
Variables

Integer 2-17, 5-7, 5-11
Joint 3-5, 4-7, 5-5
Location 3-4 ff, 4-1 ff, 4-7, 4-11, 5-2, 5-8

VISION Switch 4-17

WAIT 5-13
Wait I.oop 4-14, 5-13
WEAVE C-2
Weaving C-2
WHERE 4-3
World

Coordinates 3-1, 3-5, 3-8, 4-1, 4-3, 4-4, 5-3,
5-8, 5-9, 5-15

Mode 2-5

ZERO 4-16

(

(

